Cellular and Molecular Bioengineering

, Volume 4, Issue 1, pp 81–90 | Cite as

Low-Intensity Amplitude Modulated Ultrasound Increases Osteoblastic Mineralization

  • Sardar M. Zia Uddin
  • Jiqi Cheng
  • Wei Lin
  • Yi-Xian Qin


The purpose of this study was to assess the effect of pulsed amplitude modulated ultrasound (pAMUS) on the level of mineralization in osteoblast cell in comparison to cells stimulated with low-intensity pulsed ultrasound (LIPUS). To make the ultrasound effects more enhanced and targeted at region of interest, this study uses a novel approach of applying pulsed amplitude modulated ultrasound to osteoblast cells. The pAMUS signal was generated using two signal generators. Pulsed signal was amplified through a power amplifier and drove two identical focused ultrasound probes, focusing at the same point in the culture dish. The effects of pAMUS were evaluated using a pAMUS signal of 45 kHz and 100 kHz with 20% duty cycle. The hydrophone verified the formation of a focal point at equal distances (16 mm) from the surface of both transducers. Intensity profile using computer controlled 2D scanner showed circular focal point with a diameter of approximately 10 mm. The effect of the signal was studied using MC3T3-E1 cells cultured in osteogenic medium at time points Day 7, 12 and 18. The cells were analyzed for ALP activity and calcium mineralization. The pAMUS significantly increased the ALP activity and matrix calcification in comparison with LIPUS stimulated cultures.


Low intensity pulsed ultrasound Amplitude modulated ultrasound Bone adaptation Osteoporosis Acoustic streaming Osteoblast Mechanotransduction Mineralization 


  1. 1.
    Azuma, Y., M. Ito, Y. Harada, H. Takagi, T. Ohta, and S. Jingushi. Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. J. Bone Miner. Res. 16:671–680, 2001.CrossRefGoogle Scholar
  2. 2.
    Chen, S. H., C. Y. Chiu, J. M. Yeh, and S. H. Wang. Effect of low intensity ultrasounds on the growth of osteoblasts. Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 5834–5837, 2007.Google Scholar
  3. 3.
    Entezari, M. H., and C. Petrier. A combination of ultrasound and oxidative enzyme: sono-biodegradation of substituted phenols. Ultrason. Sonochem. 10:241–246, 2003.CrossRefGoogle Scholar
  4. 4.
    Entezari, M. H., and C. Petrier. A combination of ultrasound and oxidative enzyme: sono-enzyme degradation of phenols in a mixture. Ultrason. Sonochem. 12:283–288, 2005.CrossRefGoogle Scholar
  5. 5.
    Erinc, K., M. H. Yamani, R. C. Starling, T. Crowe, R. Hobbs, C. Bott-Silverman, G. Rincon, J. B. Young, J. Feng, D. J. Cook, N. Smedira, and E. M. Tuzcu. The effect of combined Angiotensin-converting enzyme inhibition and calcium antagonism on allograft coronary vasculopathy validated by intravascular ultrasound. J. Heart Lung Transplant. 24:1033–1038, 2005.CrossRefGoogle Scholar
  6. 6.
    Esenwein, S. A., M. Dudda, A. Pommer, K. F. Hopf, F. Kutscha-Lissberg, and G. Muhr. [Efficiency of low-intensity pulsed ultrasound on distraction osteogenesis in case of delayed callotasis—clinical results]. Zentralbl. Chir. 129:413–420, 2004.CrossRefGoogle Scholar
  7. 7.
    Feril, L. B. Jr., and T. Kondo. Biological effects of low intensity ultrasound: the mechanism involved, and its implications on therapy and on biosafety of ultrasound. J. Radiat. Res. (Tokyo) 45:479–489, 2004.CrossRefGoogle Scholar
  8. 8.
    Frankel, V. H., and K. Mizuho. Management of non-union with pulsed low-intensity ultrasound therapy—international results. Surg. Technol. Int. 10:195–200, 2002.Google Scholar
  9. 9.
    Gebauer, D., and J. Correll. Pulsed low-intensity ultrasound: a new salvage procedure for delayed unions and nonunions after leg lengthening in children. J. Pediatr. Orthop. 25:750–754, 2005.CrossRefGoogle Scholar
  10. 10.
    Gebauer, D., E. Mayr, E. Orthner, and J. P. Ryaby. Low-intensity pulsed ultrasound: effects on nonunions. Ultrasound Med. Biol. 31:1391–1402, 2005.CrossRefGoogle Scholar
  11. 11.
    Leung, K. S., W. S. Lee, H. F. Tsui, P. P. Liu, and W. H. Cheung. Complex tibial fracture outcomes following treatment with low-intensity pulsed ultrasound. Ultrasound Med. Biol. 30:389–395, 2004CrossRefGoogle Scholar
  12. 12.
    Liu, H., W. Li, C. Gao, Y. Kumagai, R. W. Blacher, and P. K. DenBesten. Dentonin, a fragment of MEPE, enhanced dental pulp stem cell proliferation. J. Dent. Res. 83:496–499, 2004.CrossRefGoogle Scholar
  13. 13.
    Lu, H., L. Qin, K. Lee, W. Cheung, K. Chan, and K. Leung. Identification of genes responsive to low-intensity pulsed ultrasound stimulations. Biochem. Biophys. Res. Commun. 378:569–573, 2009.CrossRefGoogle Scholar
  14. 14.
    Luthje, P., and I. Nurmi-Luthje. Non-union of the clavicle and delayed union of the proximal fifth metatarsal treated with low-intensity pulsed ultrasound in two soccer players. J. Sports Med. Phys. Fitness 46:476–480, 2006.Google Scholar
  15. 15.
    Mayr, E., C. Mockl, A. Lenich, M. Ecker, and A. Ruter. [Is low intensity ultrasound effective in treatment of disorders of fracture healing?]. Unfallchirurg 105:108–115, 2002.CrossRefGoogle Scholar
  16. 16.
    Nolte, P. A., A. van der Krans, P. Patka, I. M. Janssen, J. P. Ryaby, and G. H. Albers. Low-intensity pulsed ultrasound in the treatment of nonunions. J. Trauma. 51:693–702; discussion 702–3, 2001.Google Scholar
  17. 17.
    Qin, Y. X., H. Lam, S. Ferreri, and C. Rubin. Dynamic skeletal muscle stimulation and its potential in bone adaptation. J. Musculoskelet. Neuronal Interact. 10:12–24, 2010.Google Scholar
  18. 18.
    Rokhina, E. V., P. Lens, and J. Virkutyte. Low-frequency ultrasound in biotechnology: state of the art. Trends Biotechnol. 27:298–306, 2009.CrossRefGoogle Scholar
  19. 19.
    Rubin, C., S. Judex, and Y. X. Qin. Low-level mechanical signals and their potential as a non-pharmacological intervention for osteoporosis. Age Ageing 35(Suppl 2):ii32–ii36, 2006.CrossRefGoogle Scholar
  20. 20.
    Rutten, S., P. A. Nolte, C. M. Korstjens, M. A. van Duin, and J. Klein-Nulend. Low-intensity pulsed ultrasound increases bone volume, osteoid thickness and mineral apposition rate in the area of fracture healing in patients with a delayed union of the osteotomized fibula. Bone 43:348–354, 2008.CrossRefGoogle Scholar
  21. 21.
    Saito, M., K. Fujii, T. Tanaka, and S. Soshi. Effect of low- and high-intensity pulsed ultrasound on collagen post-translational modifications in MC3T3-E1 osteoblasts. Calcif. Tissue Int. 75:384–395, 2004.CrossRefGoogle Scholar
  22. 22.
    Saito, M., S. Soshi, T. Tanaka, and K. Fujii. Intensity-related differences in collagen post-translational modification in MC3T3-E1 osteoblasts after exposure to low- and high-intensity pulsed ultrasound. Bone 35:644–655, 2004.CrossRefGoogle Scholar
  23. 23.
    Sena, K., R. M. Leven, K. Mazhar, D. R. Sumner, and A. S. Virdi. Early gene response to low-intensity pulsed ultrasound in rat osteoblastic cells. Ultrasound Med. Biol. 31:703–708, 2005.CrossRefGoogle Scholar
  24. 24.
    Stanford, C. M., P. A. Jacobson, E. D. Eanes, L. A. Lembke, and R. J. Midura. Rapidly forming apatitic mineral in an osteoblastic cell line (UMR 106-01 BSP). J. Biol. Chem. 270:9420–9428, 1995.CrossRefGoogle Scholar
  25. 25.
    Suzuki, A., T. Takayama, N. Suzuki, M. Sato, T. Fukuda, and K. Ito. Daily low-intensity pulsed ultrasound-mediated osteogenic differentiation in rat osteoblasts. Acta Biochim. Biophys. Sin. (Shanghai). 41:108–115, 2009.CrossRefGoogle Scholar
  26. 26.
    Takikawa, S., N. Matsui, T. Kokubu, M. Tsunoda, H. Fujioka, K. Mizuno, and Y. Azuma. Low-intensity pulsed ultrasound initiates bone healing in rat nonunion fracture model. J. Ultrasound Med. 20:197–205, 2001.Google Scholar
  27. 27.
    Unsworth, J., S. Kaneez, S. Harris, J. Ridgway, S. Fenwick, D. Chenery, and A. Harrison. Pulsed low intensity ultrasound enhances mineralisation in preosteoblast cells. Ultrasound Med. Biol. 33:1468–1474, 2007.CrossRefGoogle Scholar
  28. 28.
    Wang, D., K. Christensen, K. Chawla, G. Xiao, P. H. Krebsbach, and R. T. Franceschi. Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J. Bone Miner. Res. 14:893–903, 1999.CrossRefGoogle Scholar
  29. 29.
    Wu, J., and X. Ge. Oxidative burst, jasmonic acid biosynthesis, and taxol production induced by low-energy ultrasound in Taxus chinensis cell suspension cultures. Biotechnol. Bioeng. 85:714–721, 2004.CrossRefGoogle Scholar
  30. 30.
    Yu, G., P. He, L. Shao, and Y. Zhu. Enzyme extraction by ultrasound from sludge flocs. J. Environ. Sci. 21:204–210, 2009.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Sardar M. Zia Uddin
    • 1
  • Jiqi Cheng
    • 1
  • Wei Lin
    • 1
  • Yi-Xian Qin
    • 1
    • 2
  1. 1.Orthopedic Bioengineering Research LaboratoryStony Brook UniversityStony BrookUSA
  2. 2.Department of Biomedical EngineeringStony Brook UniversityStony BrookUSA

Personalised recommendations