Cellular and Molecular Bioengineering

, Volume 4, Issue 1, pp 46–55 | Cite as

Genome-Wide Gene Expression Analysis of NIH 3T3 Cell Line Under Mechanical Stimulation

  • E. Kurulgan DemirciEmail author
  • T. Demirci
  • J. Trzewik
  • P. Linder
  • G. Karakulah
  • G. M. Artmann
  • M. Sakızlı
  • A. Temiz Artmann


Cyclic mechanical stretching induces biological and biomechanical response in cells. These responses are firstly determined by gene expression regulation in the cells of tissue. A method based on the CellDrum® Technology provided the environment for cyclic mechanical stimulation of NIH 3T3 cells in vitro. Cells were cultured on a silicone membrane. mRNA expression levels of the genes Egr1, Fgfr2, Tp53, Itgb3, and Itgb5 was evaluated by real-time PCR at stimulation times ranging from 5 min to 12 h with a cyclic strain of 0.25% at 0.25 Hz in order to decide which time period was most suitable for a subsequent detailed profiling. The genome-wide expression profile of NIH 3T3 cells was carried out by whole mouse genome microarrays. The mRNA expression levels of most genes tested were significantly changed after 1 h of mechanical stimulation. Subsequently, the mRNA samples of the 1-h stretched cells were hybridized to obtain a gene expression profile using microarrays. Real-time PCR results are shown to agree with the microarray results. The early response genes, such as Egr1, Egr2, Fos, Myc, Rela, Fas, Egfr1, and Fgfr2 playing a role in stretch activation of the signal transduction pathways were significantly up-regulated, whereas the only significantly down-regulated gene is Tfrc. Low level of mechanical stimulation was found to effect the expression of early responsive genes initiates alteration of NIH 3T3 behaviors to control the homeostasis of the fibroblasts.


Fibroblast Microarray Egr1 Rela Real-time PCR 



This work was supported by a K2 grant to GM. Artmann from the University of Applied Sciences Aachen, Germany and a Short-Term R&D Funding Programme (TBAG-AY/393) by a The Scientific and Technological Research Council of Turkey to Dr. Meral Sakızlı from Dokuz Eylul University, Izmir, Turkey. We also thank Dr. Neşe Atabey, Dr. Esra Erdal, and Dr. Aslı Toylu at the Dokuz Eylul University for their excellent support.

Supplementary material

12195_2010_149_MOESM1_ESM.doc (32 kb)
Supplementary Table 1 (DOC 31 kb)
12195_2010_149_MOESM2_ESM.xls (19 kb)
Supplementary Table 2 (XLS 19 kb)
12195_2010_149_MOESM3_ESM.xls (58 kb)
Supplementary Table 3 (XLS 58 kb)
12195_2010_149_MOESM4_ESM.xls (21 kb)
Supplementary Table 4 (XLS 21 kb)
12195_2010_149_MOESM5_ESM.xls (63 kb)
Supplementary Table 5 (XLS 63 kb)
12195_2010_149_MOESM6_ESM.xls (19 kb)
Supplementary Tablel 6 (XLS 19 kb)


  1. 1.
    Arrayexpress, EMBL-EBI, E-MEXP-1462, 2008.
  2. 2.
    Bearer, E. Overview of image analysis, image importing, and image processing using freeware. In: Current Protocols in Molecular Biology, edited by F. M. Ausubel, et al. Hoboken, NJ: John Wiley & Sons, 2003, pp. 14–15.Google Scholar
  3. 3.
    Brill, A., A. Torchinsky, H. Carp, and V. Toder. The role of apoptosis in normal and abnormal embryonic development. J. Assist. Reprod. Genet. 16(10):512–519, 1999.CrossRefGoogle Scholar
  4. 4.
    Bustin, S. A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25(2):169–193, 2000.CrossRefGoogle Scholar
  5. 5.
    Carter, M. G., A. A. Sharov, V. Van Buren, D. B. Dudekula, C. E. Carmack, C. Nelson, and M. S. Ko. Transcript copy number estimation using a mouse whole-genome oligonucleotide microarray. Genome Biol. 6(7):R61, 2005.CrossRefGoogle Scholar
  6. 6.
    Chen, K. D., Y. S. Li, M. Kim, S. Li, S. Yuan, S. Chien, and J. Y. Shyy. Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J. Biol. Chem. 274(26):18393–18400, 1999.CrossRefGoogle Scholar
  7. 7.
    Chen, C. H., J. V. Marymont, M. H. Huang, M. Geyer, Z. P. Luo, and X. Liu. Mechanical strain promotes fibroblast gene expression in presence of corticosteroid. Connect. Tissue Res. 48(2):65–69, 2007.CrossRefGoogle Scholar
  8. 8.
    Cheng, G. C., W. H. Briggs, D. S. Gerson, P. Libby, A. J. Grodzinsky, M. L. Gray, and R. T. Lee. Mechanical strain tightly controls fibroblast growth factor-2 release from cultured human vascular smooth muscle cells. Circ. Res. 80(1):28–36, 1997.Google Scholar
  9. 9.
    Chiu, J. J., B. S. Wung, H. J. Hsieh, L. W. Lo, and D. L. Wang. Nitric oxide regulates shear stress-induced early growth response-1. Expression via the extracellular signal-regulated kinase pathway in endothelial cells. Circ. Res. 85(3):238–246, 1999.Google Scholar
  10. 10.
    Crosara-Alberto, D. P., R. Y. Inoue, and C. R. Costa. FAK signalling mediates NF-kappaB activation by mechanical stress in cardiac myocytes. Clin. Chim. Acta 403(1–2):81–86, 2009.CrossRefGoogle Scholar
  11. 11.
    Danesch, U., P. C. Weber, and A. Sellmayer. Arachidonic acid increases c-fos and Egr-1 mRNA in 3T3 fibroblasts by formation of prostaglandin E2 and activation of protein kinase C. J. Biol. Chem. 269(44):27258–27263, 1994.Google Scholar
  12. 12.
    Demirci, T., J. Trzewik, P. Linder, G. M. Artmann, and A. Temiz Artmann. Mechanical stimulation of 3T3 fibroblasts activates genes: real time PCR products and suppliers by comparison. Biomed. Tech. (Berl) 2(2):1046–1047, 2004.Google Scholar
  13. 13.
    Estacio, W., S. S. Anna-Arriola, M. Adedipe, and L. M. Marquez-Magana. Dual promoters are responsible for transcription initiation of the fla/che operon in Bacillus subtilis. J. Bacteriol. 180(14):3548–3555, 1998.Google Scholar
  14. 14.
    Frisch, M., B. Klocke, M. Haltmeier, and K. Frech. LitInspector: literature and signal transduction pathway mining in PubMed abstracts. Nucl. Acids Res. 37(Web Server issue):W135–W140, 2009.CrossRefGoogle Scholar
  15. 15.
    Ganat, Y., S. Soni, M. Chacon, M. L. Schwartz, and F. M. Vaccarino. Chronic hypoxia up-regulates fibroblast growth factor ligands in the perinatal brain and induces fibroblast growth factor-responsive radial glial cells in the sub-ependymal zone. Neuroscience 112(4):977–991, 2002.CrossRefGoogle Scholar
  16. 16.
    Gossrau, R., M. Ruhnke, and R. Graf. Cytochemistry of bacterial proteases using 4-methoxy-2-naphthylamide peptides. Histochem. J. 17(5):532–534, 1985.CrossRefGoogle Scholar
  17. 17.
    Granet, C., N. Boutahar, L. Vico, C. Alexandre, and M. H. Lafage-Proust. MAPK and SRC-kinases control EGR-1 and NF-kappa B inductions by changes in mechanical environment in osteoblasts. Biochem. Biophys. Res. Commun. 284(3):622–631, 2001.CrossRefGoogle Scholar
  18. 18.
    Greber, B., H. Lehrach, and J. Adjaye. Fibroblast growth factor 2 modulates transforming growth factor beta signaling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal. Stem Cells 25(2):455–464, 2007.CrossRefGoogle Scholar
  19. 19.
    Guha, M., and N. Mackman. The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J. Biol. Chem. 277(35):32124–32132, 2002.CrossRefGoogle Scholar
  20. 20.
    Guller, M., K. Toualbi-Abed, A. Legrand, L. Michel, A. Mauviel, D. Bernuau, and F. Daniel. c-Fos overexpression increases the proliferation of human hepatocytes by stabilizing nuclear Cyclin D1. World J. Gastroenterol. 14(41):6339–6346, 2008.CrossRefGoogle Scholar
  21. 21.
    Hsieh, A. H., C. M. Tsai, Q. J. Ma, T. Lin, A. J. Banes, F. J. Villarreal, W. H. Akeson, and K. L. Sung. Time-dependent increases in type-III collagen gene expression in medical collateral ligament fibroblasts under cyclic strains. J. Orthop. Res. 18(2):220–227, 2000.CrossRefGoogle Scholar
  22. 22.
    Ingber, D. Integrins as mechanochemical transducers. Curr. Opin. Cell Biol. 3(5):841–848, 1991.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ingber, D. E. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20(7):811–827, 2006.CrossRefGoogle Scholar
  24. 24.
    Ishiguro, S., Y. Akasaka, H. Kiguchi, T. Suzuki, R. Imaizumi, Y. Ishikawa, K. Ito, and T. Ishii. Basic fibroblast growth factor induces down-regulation of alpha-smooth muscle actin and reduction of myofibroblast areas in open skin wounds. Wound Repair Regen. 17(4):617–625, 2009.CrossRefGoogle Scholar
  25. 25.
    Jin, Y., F. Sheikh, K. A. Detillieux, and P. A. Cattini. Role for early growth response-1 protein in alpha(1)-adrenergic stimulation of fibroblast growth factor-2 promoter activity in cardiac myocytes. Mol. Pharmacol. 57(5):984–990, 2000.Google Scholar
  26. 26.
    Khachigian, L. M., K. R. Anderson, N. J. Halnon, M. A. Gimbrone, Jr., N. Resnick, and T. Collins. Egr-1 is activated in endothelial cells exposed to fluid shear stress and interacts with a novel shear-stress-response element in the PDGF A-chain promoter. Arterioscler. Thromb. Vasc. Biol. 17(10):2280–2286, 1997.Google Scholar
  27. 27.
    Knoll, R., M. Hoshijima, and K. Chien. Cardiac mechanotransduction and implications for heart disease. J. Mol. Med. 81(12):750–756, 2003.CrossRefGoogle Scholar
  28. 28.
    Kobayashi, S., M. Nagino, S. Komatsu, K. Naruse, Y. Nimura, M. Nakanishi, and M. Sokabe. Stretch-induced IL-6 secretion from endothelial cells requires NF-kappaB activation. Biochem. Biophys. Res. Commun. 308(2):306–312, 2003.CrossRefGoogle Scholar
  29. 29.
    Li, C. F., and M. Hughes-Fulford. Fibroblast growth factor-2 is an immediate-early gene induced by mechanical stress in osteogenic cells. J. Bone Miner. Res. 21(6):946–955, 2006.CrossRefGoogle Scholar
  30. 30.
    Liao, X. D., X. H. Wang, H. J. Jin, L. Y. Chen, and Q. Chen. Mechanical stretch induces mitochondria-dependent apoptosis in neonatal rat cardiomyocytes and G2/M accumulation in cardiac fibroblasts. Cell Res. 14(1):16–26, 2004.CrossRefGoogle Scholar
  31. 31.
    Lotfi, C. F., and H. A. Armelin. cfos and cjun antisense oligonucleotides block mitogenesis triggered by fibroblast growth factor-2 and ACTH in mouse Y1 adrenocortical cells. J. Endocrinol. 168(3):381–389, 2001.CrossRefGoogle Scholar
  32. 32.
    Macedo, M. G., B. Anar, I. F. Bronner, M. Cannella, F. Squitieri, V. Bonifati, A. Hoogeveen, P. Heutink, and P. Rizzu. The DJ-1L166P mutant protein associated with early onset Parkinson’s disease is unstable and forms higher-order protein complexes. Hum. Mol. Genet. 12(21):2807–2816, 2003.CrossRefGoogle Scholar
  33. 33.
    Mayr, M., Y. Hu, H. Hainaut, and Q. Xu. Mechanical stress-induced DNA damage and rac-p38MAPK signal pathways mediate p53-dependent apoptosis in vascular smooth muscle cells. FASEB J. 16(11):1423–1425, 2002.Google Scholar
  34. 34.
    Muthukrishnan, L., E. Warder, and P. L. McNeil. Basic fibroblast growth factor is efficiently released from a cytolsolic storage site through plasma membrane disruptions of endothelial cells. J. Cell. Physiol. 148(1):1–16, 1991.CrossRefGoogle Scholar
  35. 35.
    Nichol, J. W., A. R. Khan, M. Birbach, J. W. Gaynor, and K. J. Gooch. Hemodynamics and axial strain additively increase matrix remodeling and MMP-9, but not MMP-2, expression in arteries engineered by directed remodeling. Tissue Eng. A 15(6):1281–1290, 2009.Google Scholar
  36. 36.
    Nishi, H., K. H. Nishi, and A. C. Johnson. Early growth response-1 gene mediates up-regulation of epidermal growth factor receptor expression during hypoxia. Cancer Res. 62(3):827–834, 2002.Google Scholar
  37. 37.
    Orr, A. W., B. P. Helmke, B. R. Blackman, and M. A. Schwartz. Mechanisms of mechanotransduction. Dev. Cell 10(1):11–20, 2006.CrossRefGoogle Scholar
  38. 38.
    Pai, S. R., and R. C. Bird. c-fos expression is required during all phases of the cell cycle during exponential cell proliferation. Anticancer Res. 14(3A):985–994, 1994.Google Scholar
  39. 39.
    Park, J. S., J. S. Chu, C. Cheng, F. Chen, D. Chen, and S. Li. Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol. Bioeng. 88(3):359–368, 2004.CrossRefGoogle Scholar
  40. 40.
    Pfaffl, M. W., G. W. Horgan, and L. Dempfle. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucl. Acids Res. 30(9):e36, 2002.CrossRefGoogle Scholar
  41. 41.
    Quinn, T. P., M. Schlueter, S. J. Soifer, and J. A. Gutierrez. Cyclic mechanical stretch induces VEGF and FGF-2 expression in pulmonary vascular smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 282(5):L897–L903, 2002.Google Scholar
  42. 42.
    Qureshi, S. A., X. M. Cao, V. P. Sukhatme, and D. A. Foster. v-Src activates mitogen-responsive transcription factor Egr-1 via serum response elements. J. Biol. Chem. 266(17):10802–10806, 1991.Google Scholar
  43. 43.
    Ridley, A. J. Growth factor-induced actin reorganization in Swiss 3T3 cells. Methods Enzymol. 256:306–313, 1995.CrossRefGoogle Scholar
  44. 44.
    Sadoshima, J., and S. Izumo. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J. 12(4):1681–1692, 1993.Google Scholar
  45. 45.
    Schroeder, A., O. Mueller, S. Stocker, R. Salowsky, M. Leiber, M. Gassmann, S. Lightfoot, W. Menzel, M. Granzow, and T. Ragg. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol. 7:3, 2006.CrossRefGoogle Scholar
  46. 46.
    Schwachtgen, J. L., P. Houston, C. Campbell, V. Sukhatme, and M. Braddock. Fluid shear stress activation of egr-1 transcription in cultured human endothelial and epithelial cells is mediated via the extracellular signal-related kinase 1/2 mitogen-activated protein kinase pathway. J. Clin. Invest. 101(11):2540–2549, 1998.CrossRefGoogle Scholar
  47. 47.
    Strutz, F., M. Zeisberg, B. Hemmerlein, B. Sattler, K. Hummel, V. Becker, and G. A. Muller. Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation. Kidney Int. 57(4):1521–1538, 2000.CrossRefGoogle Scholar
  48. 48.
    Stula, M., H. D. Orzechowski, S. Gschwend, R. Vetter, R. von Harsdorf, R. Dietz, and M. Paul. Influence of sustained mechanical stress on Egr-1 mRNA expression in cultured human endothelial cells. Mol. Cell. Biochem. 210(1–2):101–108, 2000.CrossRefGoogle Scholar
  49. 49.
    Sukhatme, V. P., X. M. Cao, L. C. Chang, C. H. Tsai-Morris, D. Stamenkovich, P. C. Ferreira, D. R. Cohen, S. A. Edwards, T. B. Shows, T. Curran, et al. A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell 53(1):37–43, 1988.CrossRefGoogle Scholar
  50. 50.
    Suzuki, M., K. Naruse, Y. Asano, T. Okamoto, N. Nishikimi, T. Sakurai, Y. Nimura, and M. Sokabe. Up-regulation of integrin beta 3 expression by cyclic stretch in human umbilical endothelial cells. Biochem. Biophys. Res. Commun. 239(2):372–376, 1997.CrossRefGoogle Scholar
  51. 51.
    Trzewik, J., A. Artmann-Temiz, P. T. Linder, T. Demirci, I. Digel, and G. M. Artmann. Evaluation of lateral mechanical tension in thin-film tissue constructs. Ann. Biomed. Eng. 32(9):1243–1251, 2004.CrossRefGoogle Scholar
  52. 52.
    Trzewik, J., M. Ates, and G. M. Artmann. A novel method to quantify mechanical tension in cell monolayers. Biomed Tech (Berl) 47(Suppl 1 Pt 1):379–381, 2002.CrossRefGoogle Scholar
  53. 53.
    Trzewik, J., S. K. Mallipattu, G. M. Artmann, F. A. Delano, and G. W. Schmid-Schonbein. Evidence for a second valve system in lymphatics: endothelial microvalves. FASEB J. 15(10):1711–1717, 2001.CrossRefGoogle Scholar
  54. 54.
    Uriguen, L., D. Arteta, R. Diez-Alarcia, M. Ferrer-Alcon, A. Diaz, A. Pazos, and J. J. Meana. Gene expression patterns in brain cortex of three different animal models of depression. Genes Brain Behav. 7(6):649–658, 2008.CrossRefGoogle Scholar
  55. 55.
    Vardar-Sengul, S., T. Demirci, B. H. Sen, V. Erkizan, E. Kurulgan, and H. Baylas. Human beta defensin-1 and -2 expression in the gingiva of patients with specific periodontal diseases. J. Periodontal Res. 42(5):429–437, 2007.CrossRefGoogle Scholar
  56. 56.
    Wernig, F., M. Mayr, and Q. Xu. Mechanical stretch-induced apoptosis in smooth muscle cells is mediated by beta1-integrin signaling pathways. Hypertension 41(4):903–911, 2003.CrossRefGoogle Scholar
  57. 57.
    Yano, Y., J. Geibel, and B. E. Sumpio. Tyrosine phosphorylation of pp125FAK and paxillin in aortic endothelial cells induced by mechanical strain. Am. J. Physiol. 271(2 Pt 1):C635–649, 1996.Google Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • E. Kurulgan Demirci
    • 1
    Email author
  • T. Demirci
    • 1
    • 2
  • J. Trzewik
    • 1
  • P. Linder
    • 1
  • G. Karakulah
    • 3
  • G. M. Artmann
    • 1
  • M. Sakızlı
    • 2
  • A. Temiz Artmann
    • 1
  1. 1.Department Cell Biophysics, Institute of BioengineeringAachen University of Applied SciencesJülichGermany
  2. 2.Department of Medical Biology and Genetics, School of MedicineDokuz Eylul UniversityIzmirTurkey
  3. 3.Department of Medical Informatics, Health Sciences InstituteDokuz Eylul UniversityIzmirTurkey

Personalised recommendations