Cellular and Molecular Bioengineering

, Volume 4, Issue 1, pp 9–27 | Cite as

Effects of Morphology vs. Cell–Cell Interactions on Endothelial Cell Stiffness

Article

Abstract

Biological processes such as atherogenesis, wound healing, cancer cell metastasis, and immune cell transmigration rely on a delicate balance between cell–cell and cell–substrate adhesion. Cell mechanics have been shown to depend on substrate factors such as stiffness and ligand presentation, while the effects of cell–cell interactions on the mechanical properties of cells has received little attention. Here, we use atomic force microscopy to measure the Young’s modulus of live human umbilical vein endothelial cells (HUVECs). In varying the degree of cell–cell contact in HUVECs (single cells, groups, and monolayers), we observe that increased cell stiffness correlates with an increase in cell area. Further, we observe that HUVECs stiffen as they spread onto a glass substrate. When we weaken cell–cell junctions (i.e., through a low dose of cytochalasin B or treatment with a VE-cadherin antibody), we observe that cell–substrate adhesion increases, as measured by focal adhesion size and density, and the stiffness of cells within the monolayer approaches that of single cells. Our results suggest that while morphology can roughly be used to predict cell stiffness, cell–cell interactions may play a significant role in determining the mechanical properties of individual cells in tissues by careful maintenance of cell tension homeostasis.

Keywords

Cell mechanics Cell spreading Focal adhesions Cell tension Actin 

Notes

Acknowledgments

This work was completed under an NSF Graduate Research Fellowship to KMS, NIH NRSA fellowship to KMS (NINDS Award Number F31NS068028) and NSF Award CMMI-0643783 to HAE. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Neurological Disorders and Stroke or the National Institutes of Health.

References

  1. 1.
    Adams, C. L., and W. J. Nelson. Cytomechanics of cadherin-mediated cell–cell adhesion. Curr. Opin. Cell Biol. 10:572–577, 1998.CrossRefGoogle Scholar
  2. 2.
    Angst, B. D., C. Marcozzi, and A. I. Magee. The cadherin superfamily: diversity in form and function. J. Cell Sci. 114:629–641, 2001.Google Scholar
  3. 3.
    Axelrod, D. Total internal reflection fluorescence microscopy in cell biology. Traffic 2:764–774, 2001.CrossRefGoogle Scholar
  4. 4.
    Balaban, N. Q., U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3:466–472, 2001.CrossRefGoogle Scholar
  5. 5.
    Bellin, R. M., J. D. Kubicek, M. J. Frigault, A. J. Kamien, R. L. Steward, et al. Defining the role of syndecan-4 in mechanotransduction using surface-modification approaches. Proc. Natl Acad. Sci. USA 106:22102–22107, 2009.CrossRefGoogle Scholar
  6. 6.
    Bereiterhahn, J., M. Luck, T. Miebach, H. K. Stelzer, and M. Voth. Spreading of trypsinized cells—cytoskeletal dynamics and energy-requirements. J. Cell Sci. 96:171–188, 1990.Google Scholar
  7. 7.
    Bhadriraju, K., and L. K. Hansen. Extracellular matrix- and cytoskeleton-dependent changes in cell shape and stiffness. Exp. Cell Res. 278:92–100, 2002.CrossRefGoogle Scholar
  8. 8.
    Blacher, J., R. Asmar, S. Djane, G. M. London, and M. E. Safar. Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension 33:1111–1117, 1999.Google Scholar
  9. 9.
    Blaschuk, O. W., and E. Devemy. Cadherins as novel targets for anti-cancer therapy. Eur. J. Pharmacol. 625:195–198, 2009.CrossRefGoogle Scholar
  10. 10.
    Boutouyrie, P., A. I. Tropeano, R. Asmar, I. Gautier, A. Benetos, et al. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients—a longitudinal study. Hypertension 39:10–15, 2002.CrossRefGoogle Scholar
  11. 11.
    Butt, H. J., and M. Jaschke. Calculation of thermal noise in atomic-force microscopy. Nanotechnology 6:1–7, 1995.CrossRefGoogle Scholar
  12. 12.
    Byfield, F. J., R. K. Reen, T. P. Shentu, I. Levitan, and K. J. Gooch. Endothelial actin and cell stiffness is modulated by substrate stiffness in 2D and 3D. J. Biomech. 42:1114–1119, 2009.CrossRefGoogle Scholar
  13. 13.
    Cai, X. F., X. B. Xing, J. Y. Cai, Q. Chen, S. X. Wu, and F. C. Huang. Connection between biomechanics and cytoskeleton structure of lymphocyte and Jurkat cells: an AFM study. Micron 41:257–262, 2010.CrossRefGoogle Scholar
  14. 14.
    Califano, J. P., and C. A. Reinhart-King. A balance of substrate mechanics and matrix chemistry regulates endothelial cell network assembly. Cel. Mol. Bioeng. 1:122–132, 2008.CrossRefGoogle Scholar
  15. 15.
    Califano, J. P., and C. A. Reinhart-King. Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact. Cel. Mol. Bioeng. 3:68–75, 2010.CrossRefGoogle Scholar
  16. 16.
    Chen, C. S., M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber. Geometric control of cell life and death. Science 276:1425–1428, 1997.CrossRefGoogle Scholar
  17. 17.
    Chouinard, J. A., G. Grenier, A. Khalil, and P. Vermette. Oxidized-LDL induce morphological changes and increase stiffness of endothelial cells. Exp. Cell Res. 314:3007–3016, 2008.CrossRefGoogle Scholar
  18. 18.
    Corada, M., M. Mariotti, G. Thurston, K. Smith, R. Kunkel, et al. Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc. Natl Acad. Sci. USA 96:9815–9820, 1999.CrossRefGoogle Scholar
  19. 19.
    Dahl, K. N., A. J. S. Ribeiro, and J. Lammerding. Nuclear shape, mechanics, and mechanotransduction. Circ. Res. 102:1307–1318, 2008.CrossRefGoogle Scholar
  20. 20.
    Davies, P. F., K. A. Barbee, M. V. Volin, A. Robotewskyj, J. Chen, et al. Spatial relationships in early signaling events of flow-mediated endothelial mechanotransduction. Annu. Rev. Physiol. 59:527–549, 1997.CrossRefGoogle Scholar
  21. 21.
    de Rooij, J., A. Kerstens, G. Danuser, M. A. Schwartz, and C. M. Waterman-Storer. Integrin-dependent actomyosin contraction regulates epithelial cell scattering. J. Cell Biol. 171:153–164, 2005.CrossRefGoogle Scholar
  22. 22.
    Dejana, E. Endothelial cell–cell junctions: happy together. Nat. Rev. Mol. Cell Biol. 5:261–270, 2004.CrossRefGoogle Scholar
  23. 23.
    Engler, A., L. Bacakova, C. Newman, A. Hategan, M. Griffin, and D. Discher. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86:617–628, 2004.CrossRefGoogle Scholar
  24. 24.
    Etienne-Manneville, S., and A. Hall. Rho GTPases in cell biology. Nature 420:629–635, 2002.CrossRefGoogle Scholar
  25. 25.
    Fagotto, F., and B. M. Gumbiner. Cell contact-dependent signaling. Dev. Biol. 180:445–454, 1996.CrossRefGoogle Scholar
  26. 26.
    Farhadifar, R., J. C. Roper, B. Algouy, S. Eaton, and F. Julicher. The influence of cell mechanics, cell–cell interactions, and proliferation on epithelial packing. Curr. Biol. 17:2095–2104, 2007.CrossRefGoogle Scholar
  27. 27.
    Foty, R. A., C. M. Pfleger, G. Forgacs, and M. S. Steinberg. Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development 122:1611–1620, 1996.Google Scholar
  28. 28.
    Gardel, M. L., F. Nakamura, J. H. Hartwig, J. C. Crocker, T. P. Stossel, and D. A. Weitz. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. Proc. Natl Acad. Sci. USA 103:1762–1767, 2006.CrossRefGoogle Scholar
  29. 29.
    Gauthier, N. C., O. M. Rossier, A. Mathur, J. C. Hone, and M. P. Sheetz. Plasma membrane area increases with spread area by exocytosis of a GPI-anchored protein compartment. Mol. Biol. Cell 20:3261–3272, 2009.CrossRefGoogle Scholar
  30. 30.
    Geiger, B., and A. Bershadsky. Assembly and mechanosensory function of focal contacts. Curr. Opin. Cell Biol. 13:584–592, 2001.CrossRefGoogle Scholar
  31. 31.
    Ghosh, K., Z. Pan, E. Guan, S. Ge, Y. Liu, et al. Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties. Biomaterials 28:671–679, 2007.CrossRefGoogle Scholar
  32. 32.
    Gotsch, U., E. Borges, R. Bosse, E. Boggemeyer, M. Simon, et al. VE-cadherin antibody accelerates neutrophil recruitment in vivo. J. Cell Sci. 110:583–588, 1997.Google Scholar
  33. 33.
    Helmke, B. P., R. D. Goldman, and P. F. Davies. Rapid displacement of vimentin intermediate filaments in living endothelial cells exposed to flow. Circ. Res. 86:745–752, 2000.Google Scholar
  34. 34.
    Hoffman, B. D., and J. C. Crocker. Cell mechanics: dissecting the physical responses of cells to force. Annu. Rev. Biomed. Eng. 11:259–288, 2009.CrossRefGoogle Scholar
  35. 35.
    Hordijk, P. L., E. Anthony, F. P. J. Mul, R. Rientsma, L. C. J. M. Oomen, and D. Roos. Vascular-endothelial-cadherin modulates endothelial monolayer permeability. J. Cell Sci. 112:1915–1923, 1999.Google Scholar
  36. 36.
    Hutson, M. S., Y. Tokutake, M. S. Chang, J. W. Bloor, S. Venakides, et al. Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 300:145–149, 2003.CrossRefGoogle Scholar
  37. 37.
    Hutter, J. L., and J. Bechhoefer. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64:1868–1873, 1993.CrossRefGoogle Scholar
  38. 38.
    Isenberg, B. C., P. A. DiMilla, M. Walker, S. Kim, and J. Y. Wong. Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength. Biophys. J. 97:1313–1322, 2009.CrossRefGoogle Scholar
  39. 39.
    Juliano, R. L. Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu. Rev. Pharmacol. Toxicol. 42:283–323, 2002.CrossRefGoogle Scholar
  40. 40.
    Kasas, S., X. Wang, H. Hirling, R. Marsault, B. Huni, et al. Superficial and deep changes of cellular mechanical properties following cytoskeleton disassembly. Cell Motil. Cytoskeleton 62:124–132, 2005.CrossRefGoogle Scholar
  41. 41.
    Ko, K. S., P. D. Arora, and C. A. McCulloch. Cadherins mediate intercellular mechanical signaling in fibroblasts by activation of stretch-sensitive calcium-permeable channels. J. Biol. Chem. 276:35967–35977, 2001.CrossRefGoogle Scholar
  42. 42.
    Ladoux, B., E. Anon, M. Lambert, A. Rabodzey, P. Hersen, et al. Strength dependence of cadherin-mediated adhesions. Biophys. J. 98:534–542, 2010.CrossRefGoogle Scholar
  43. 43.
    Lampugnani, M. G., A. Zanetti, F. Breviario, G. Balconi, F. Orsenigo, et al. VE-cadherin regulates endothelial actin activating Rac and increasing membrane association of Tiam. Mol. Biol. Cell 13:1175–1189, 2002.CrossRefGoogle Scholar
  44. 44.
    Lauffenburger, D. A., and L. G. Griffith. Who’s got pull around here? Cell organization in development and tissue engineering. Proc. Natl Acad. Sci. USA 98:4282–4284, 2001.CrossRefGoogle Scholar
  45. 45.
    Levenberg, S., B. Z. Katz, K. M. Yamada, and B. Geiger. Long-range and selective autoregulation of cell–cell or cell–matrix adhesions by cadherin or integrin ligands. J. Cell Sci. 111:347–357, 1998.Google Scholar
  46. 46.
    Lin, L. A. G., A. Q. Liu, Y. F. Yu, C. Zhang, C. S. Lim, et al. Cell compressibility studies utilizing noncontact hydrostatic pressure measurements on single living cells in a microchamber. Appl. Phys. Lett. 92:233901–233903, 2008.CrossRefGoogle Scholar
  47. 47.
    Majno, G., and I. Joris. Cells, Tissues, and Disease: Principles of General Pathology. Worcester, MA: Blackwell Science, 974, pp. 1996.Google Scholar
  48. 48.
    Martens, J. C., and M. Radmacher. Softening of the actin cytoskeleton by inhibition of myosin II. Pflugers Arch. 456:95–100, 2008.CrossRefGoogle Scholar
  49. 49.
    Nelson, C. M., and C. S. Chen. Cell–cell signaling by direct contact increases cell proliferation via a PI3K-dependent signal. FEBS Lett. 514:238–242, 2002.CrossRefGoogle Scholar
  50. 50.
    Nelson, C. M., and C. S. Chen. VE-cadherin simultaneously stimulates and inhibits cell proliferation by altering cytoskeletal structure and tension. J. Cell Sci. 116:3571–3581, 2003.CrossRefGoogle Scholar
  51. 51.
    Nelson, C. M., D. M. Pirone, J. L. Tan, and C. S. Chen. Vascular endothelial-cadherin regulates cytoskeletal tension, cell spreading, and focal adhesions by stimulating RhoA. Mol. Biol. Cell 15:2943–2953, 2004.CrossRefGoogle Scholar
  52. 52.
    Norman, L. L., R. J. Oetama, M. Dembo, F. Byfield, D. A. Hammer, et al. Modification of cellular cholesterol content affects traction force, adhesion and cell spreading. Cel. Mol. Bioeng. 3:151–162, 2010.CrossRefGoogle Scholar
  53. 53.
    Oberleithner, H., C. Callies, K. Kusche-Vihrog, H. Schillers, V. Shahin, et al. Potassium softens vascular endothelium and increases nitric oxide release. Proc. Natl Acad. Sci. USA 106:2829–2834, 2009.CrossRefGoogle Scholar
  54. 54.
    Oberleithner, H., C. Riethmuller, H. Schillers, G. A. MacGregor, H. E. de Wardener, and M. Hausberg. Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proc. Natl Acad. Sci. USA 104:16281–16286, 2007.CrossRefGoogle Scholar
  55. 55.
    Paszek, M. J., N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254, 2005.CrossRefGoogle Scholar
  56. 56.
    Rawicz, W., K. C. Olbrich, T. McIntosh, D. Needham, and E. Evans. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79:328–339, 2000.CrossRefGoogle Scholar
  57. 57.
    Reinhart-King, C. A. Endothelial cell adhesion and migration. Methods Enzymol. 443:45–64, 2008.CrossRefGoogle Scholar
  58. 58.
    Reinhart-King, C. A., M. Dembo, and D. A. Hammer. The dynamics and mechanics of endothelial cell spreading. Biophys. J. 89:676–689, 2005.CrossRefGoogle Scholar
  59. 59.
    Reinhart-King, C. A., M. Dembo, and D. A. Hammer. Cell–cell mechanical communication through compliant substrates. Biophys. J. 95:6044–6051, 2008.CrossRefGoogle Scholar
  60. 60.
    Rico, F., P. Roca-Cusachs, N. Gavara, R. Farre, M. Rotger, and D. Navajas. Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72:021914, 2005.CrossRefGoogle Scholar
  61. 61.
    Roca-Cusachs, P., J. Alcaraz, R. Sunyer, J. Samitier, R. Farre, and D. Navajas. Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation. Biophys. J. 94:4984–4995, 2008.CrossRefGoogle Scholar
  62. 62.
    Rotsch, C., and M. Radmacher. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys. J. 78:520–535, 2000.CrossRefGoogle Scholar
  63. 63.
    Ryan, P. L., R. A. Foty, J. Kohn, and M. S. Steinberg. Tissue spreading on implantable substrates is a competitive outcome of cell–cell vs. cell–substratum adhesivity. Proc. Natl Acad. Sci. USA 98:4323–4327, 2001.CrossRefGoogle Scholar
  64. 64.
    Sato, M., K. Nagayama, N. Kataoka, M. Sasaki, and K. Hane. Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress. J. Biomech. 33:127–135, 2000.CrossRefGoogle Scholar
  65. 65.
    Shay-Salit, A., M. Shushy, E. Wolfovitz, H. Yahav, F. Breviario, et al. VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc. Natl Acad. Sci. USA 99:9462–9467, 2002.CrossRefGoogle Scholar
  66. 66.
    Sneddon, I. N. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3:47–57, 1965.MATHMathSciNetCrossRefGoogle Scholar
  67. 67.
    Solon, J., I. Levental, K. Sengupta, P. C. Georges, and P. A. Janmey. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys. J. 93:4453–4461, 2007.CrossRefGoogle Scholar
  68. 68.
    Stroka, K. M., and H. Aranda-Espinoza. Neutrophils display biphasic relationship between migration and substrate stiffness. Cell Motil. Cytoskeleton 66:328–341, 2009.CrossRefGoogle Scholar
  69. 69.
    Stroka, K. M., and H. Aranda-Espinoza. A biophysical view of the interplay between mechanical forces and signaling pathways during transendothelial cell migration. FEBS J. 277:1145–1158, 2010.CrossRefGoogle Scholar
  70. 70.
    Svaldo Lanero, T., O. Cavalleri, S. Krol, R. Rolandi, and A. Gliozzi. Mechanical properties of single living cells encapsulated in polyelectrolyte matrixes. J. Biotechnol. 124:723–731, 2006.CrossRefGoogle Scholar
  71. 71.
    Trepat, X., M. R. Wasserman, T. E. Angelini, E. Millet, D. A. Weitz, et al. Physical forces during collective cell migration. Nat. Phys. 5:426–430, 2009.CrossRefGoogle Scholar
  72. 72.
    Ueki, Y., N. Sakamoto, T. Ohashi, and M. Sato. Morphological responses of vascular endothelial cells induced by local stretch transmitted through intercellular junctions. Exp. Mech. 49:125–134, 2009.CrossRefGoogle Scholar
  73. 73.
    Vinckier, A., and G. Semenza. Measuring elasticity of biological materials by atomic force microscopy. FEBS Lett. 430:12–16, 1998.CrossRefGoogle Scholar
  74. 74.
    Vitorino, P., and T. Meyer. Modular control of endothelial sheet migration. Genes Dev. 22:3268–3281, 2008.CrossRefGoogle Scholar
  75. 75.
    Wakatsuki, T., B. Schwab, N. C. Thompson, and E. L. Elson. Effects of cytochalasin D and latrunculin B on mechanical properties of cells. J. Cell Sci. 114:1025–1036, 2001.Google Scholar
  76. 76.
    Wang, N., and D. Stamenovic. Mechanics of vimentin intermediate filaments. J. Muscle Res. Cell Motil. 23:535–540, 2002.CrossRefGoogle Scholar
  77. 77.
    Wang, N., I. M. Tolic-Norrelykke, J. Chen, S. M. Mijailovich, J. P. Butler, et al. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am. J. Physiol. Cell Physiol. 282:C606–C616, 2002.Google Scholar
  78. 78.
    Waterman-Storer, C. M., W. C. Salmon, and E. D. Salmon. Feedback interactions between cell–cell adherens junctions and cytoskeletal dynamics in Newt lung epithelial cells. Mol. Biol. Cell 11:2471–2483, 2000.Google Scholar
  79. 79.
    Weisenhorn, A. L., M. Khorsandit, S. Kasast, V. Gotzost, and H.-J. Butt. Deformation and height anomaly of soft surfaces studied with an AFM. Nanotechnology 4:106–113, 1993.CrossRefGoogle Scholar
  80. 80.
    Yeung, T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60:24–34, 2005.CrossRefGoogle Scholar
  81. 81.
    Zhu, A. J., and F. M. Watt. Expression of a dominant negative cadherin mutant inhibits proliferation and stimulates terminal differentiation of human epidermal keratinocytes. J. Cell Sci. 109:3013–3023, 1996.Google Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  1. 1.Fischell Department of BioengineeringUniversity of Maryland, College ParkCollege ParkUSA

Personalised recommendations