Advertisement

Cellular and Molecular Bioengineering

, Volume 3, Issue 4, pp 398–414 | Cite as

Cortical Neuron Outgrowth is Insensitive to Substrate Stiffness

  • Leann L. Norman
  • Helim Aranda-EspinozaEmail author
Article

Abstract

Changes in substrate compliance affect the cellular behavior of numerous cell types including epithelial, endothelial, fibroblasts, and stem cells. Recently, an emphasis has been placed on understanding the mechanotactic behavior of neurons, in an attempt to treat neurological injury and disease as well as to optimize the development of synthetic biomaterials for neural regeneration. Here, we determine the stiffness of the fetal rat cortex using atomic force microscopy and evaluate the effect of substrate mechanics on cortical neuron behavior using polyacrylamide gels with stiffness around that measured for the cortex. In particular, we evaluate the relationship between substrate compliance and ligand coating to morphology, differentiation, and extension behavior. Remarkably, we see an insensitivity of cortical process length and migration to substrate stiffness. We observe differences in the tortuosity of process extension on laminin vs. poly-d-lysine, as well as differences in cell body migration; however these differences are independent of substrate compliance. Myosin II inhibition revealed effects independent of stiffness, yet dependent on outgrowth behavior. Collectively, this work suggests that cortical neurons are capable of differentiating and extending processes regardless of substrate stiffness, which we attribute to the homogeneity of their native environment and their unwarranted need to distinguish substrate compliance.

Keywords

Mechanotaxis Axon differentiation Polyacrylamide gels Atomic force microscopy 

Notes

Acknowledgments

This work was supported by NSF Grant CMMI-0643783 to HAE. We thank the Functional Macromolecular Laboratory at the University of Maryland (specifically Dr. Peter Kofinas and Brendan Casey) for training and use of the Dynamic Mechanical Analyzer. We would like to thank Kimberly Stroka for use of the custom-written Matlab programs used to fit AFM force curves, and Emily Shih and Hema Balkaran for assistance with the cell body displacement and outgrowth analysis. We also thank Dr. Herbert Geller for stimulating discussions.

References

  1. 1.
    Bagnard, D., et al. Axonal surface molecules act in combination with semaphorin 3a during the establishment of corticothalamic projections. Cereb. Cortex 11(3):278–285, 2001.CrossRefGoogle Scholar
  2. 2.
    Balgude, A. P., et al. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials 22(10):1077–1084, 2001.CrossRefGoogle Scholar
  3. 3.
    Basarsky, T. A., V. Parpura, and P. G. Haydon. Hippocampal synaptogenesis in cell culture: developmental time course of synapse formation, calcium influx, and synaptic protein distribution. J. Neurosci. 14(11 Pt 1):6402–6411, 1994.Google Scholar
  4. 4.
    Bentley, D., and A. Toroian-Raymond. Disoriented pathfinding by pioneer neurone growth cones deprived of filopodia by cytochalasin treatment. Nature 323(6090):712–715, 1986.CrossRefGoogle Scholar
  5. 5.
    Billuart, P., et al. Regulating axon branch stability: the role of p190 RhoGAP in repressing a retraction signaling pathway. Cell 107(2):195–207, 2001.CrossRefGoogle Scholar
  6. 6.
    Boal, D. Mechanics of the Cell. Cambridge, UK: Cambridge University Press, p. 406, 2002.Google Scholar
  7. 7.
    Bridgman, P. C., et al. Myosin IIB is required for growth cone motility. J. Neurosci. 21(16):6159–6169, 2001.Google Scholar
  8. 8.
    Brown, X. Q., K. Ookawa, and J. Y. Wong. Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response. Biomaterials 26(16):3123–3129, 2005.CrossRefGoogle Scholar
  9. 9.
    Chan, C. E., and D. J. Odde. Traction dynamics of filopodia on compliant substrates. Science 322(5908):1687–1691, 2008.CrossRefGoogle Scholar
  10. 10.
    Cheng, S., E. C. Clarke, and L. E. Bilston. Rheological properties of the tissues of the central nervous system: a review. Med. Eng. Phys. 30(10):1318–1337, 2008.CrossRefGoogle Scholar
  11. 11.
    Clarke, E. C., S. Cheng, and L. E. Bilston. The mechanical properties of neonatal rat spinal cord in vitro, and comparisons with adult. J. Biomech. 42(10):1397–1402, 2009.CrossRefGoogle Scholar
  12. 12.
    Craig, A. M., and G. Banker. Neuronal polarity. Annu. Rev. Neurosci. 17:267–310, 1994.CrossRefGoogle Scholar
  13. 13.
    Dennerll, T. J., et al. The cytomechanics of axonal elongation and retraction. J. Cell Biol. 109(6 Pt 1):3073–3083, 1989.CrossRefGoogle Scholar
  14. 14.
    Dotti, C. G., C. A. Sullivan, and G. A. Banker. The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8(4):1454–1468, 1988.Google Scholar
  15. 15.
    Elkin, B. S., et al. Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J. Neurotrauma 24(5):812–822, 2007.CrossRefGoogle Scholar
  16. 16.
    Engler, A. J., et al. Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689, 2006.CrossRefGoogle Scholar
  17. 17.
    Fiford, R. J., and L. E. Bilston. The mechanical properties of rat spinal cord in vitro. J. Biomech. 38(7):1509–1515, 2005.CrossRefGoogle Scholar
  18. 18.
    Flanagan, L. A., et al. Neurite branching on deformable substrates. Neuroreport 13(18):2411–2415, 2002.CrossRefGoogle Scholar
  19. 19.
    Franze, K., et al. Neurite branch retraction is caused by a threshold-dependent mechanical impact. Biophys. J. 97(7):1883–1890, 2009.CrossRefGoogle Scholar
  20. 20.
    Gallo, G. Myosin II activity is required for severing-induced axon retraction in vitro. Exp. Neurol. 189(1):112–121, 2004.CrossRefGoogle Scholar
  21. 21.
    Gallo, G., H. F. Yee, Jr., and P. C. Letourneau. Actin turnover is required to prevent axon retraction driven by endogenous actomyosin contractility. J. Cell Biol. 158(7):1219–1228, 2002.CrossRefGoogle Scholar
  22. 22.
    Georges, P. C., et al. Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys. J. 90(8):3012–3018, 2006.CrossRefGoogle Scholar
  23. 23.
    Georges, P. C., et al. Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 293(6):G1147–G1154, 2007.CrossRefGoogle Scholar
  24. 24.
    Gonthier, B., C. Nasarre, T. Rudiger, and D. Bagnard. Protocol for the primary culture of cortical neurons. In: New Methods for Culturing Cells from Nervous Tissues, Vol. 1, edited by P. Poindron, P. Piguet, and E. Forster. Basel: Karger, 2005, pp. 12–22.CrossRefGoogle Scholar
  25. 25.
    Greene, L. A. Nerve growth factor prevents the death and stimulates the neuronal differentiation of clonal PC12 pheochromocytoma cells in serum-free medium. J. Cell Biol. 78(3):747–755, 1978.CrossRefGoogle Scholar
  26. 26.
    Ichihara, K., et al. Gray matter of the bovine cervical spinal cord is mechanically more rigid and fragile than the white matter. J. Neurotrauma 18(3):361–367, 2001.CrossRefMathSciNetGoogle Scholar
  27. 27.
    Jay, P. Y., et al. A mechanical function of myosin II in cell motility. J. Cell Sci. 108(Pt 1):387–393, 1995.Google Scholar
  28. 28.
    Jiang, G., et al. Rigidity sensing at the leading edge through alphavbeta3 integrins and RPTPalpha. Biophys. J. 90(5):1804–1809, 2006.CrossRefGoogle Scholar
  29. 29.
    Kawaguchi, Y., F. Karube, and Y. Kubota. Dendritic branch typing and spine expression patterns in cortical nonpyramidal cells. Cereb. Cortex 16(5):696–711, 2006.CrossRefGoogle Scholar
  30. 30.
    Ketschek, A. R., S. L. Jones, and G. Gallo. Axon extension in the fast and slow lanes: substratum-dependent engagement of myosin II functions. Dev. Neurobiol. 67(10):1305–1320, 2007.CrossRefGoogle Scholar
  31. 31.
    Kostic, A., J. Sap, and M. P. Sheetz. RPTPalpha is required for rigidity-dependent inhibition of extension and differentiation of hippocampal neurons. J. Cell Sci. 120(Pt 21):3895–3904, 2007.CrossRefGoogle Scholar
  32. 32.
    Lamoureux, P., R. E. Buxbaum, and S. R. Heidemann. Direct evidence that growth cones pull. Nature 340(6229):159–162, 1989.CrossRefGoogle Scholar
  33. 33.
    Leach, J. B., et al. Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. J. Neural Eng. 4(2):26–34, 2007.CrossRefGoogle Scholar
  34. 34.
    Lemmon, V., et al. Neurite growth on different substrates: permissive versus instructive influences and the role of adhesive strength. J. Neurosci. 12(3):818–826, 1992.Google Scholar
  35. 35.
    Levental, I., P. C. Georges, and P. A. Janmey. Soft biological materials and their impact on cell function. Soft Matter 3:299–306, 2007.CrossRefGoogle Scholar
  36. 36.
    Lin, L., et al. Cell compressibility studies utilizing noncontact hydrostatic pressure measurements on single living cells in a microchamber. Appl. Phys. Lett. 92:233901–233903, 2008.CrossRefGoogle Scholar
  37. 37.
    Lo, C.-M., et al. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144–152, 2000.CrossRefGoogle Scholar
  38. 38.
    Lu, Y. B., et al. Viscoelastic properties of individual glial cells and neurons in the CNS. Proc. Natl Acad. Sci. USA 103(47):17759–17764, 2006.CrossRefGoogle Scholar
  39. 39.
    Majno, G., and I. Joris. Cells, Tissues, Disease: Principles of General Pathology. Worcester: Blackwell Science, 1996.Google Scholar
  40. 40.
    Matsumoto, T., et al. Local elastic modulus of atherosclerotic lesions of rabbit thoracic aortas measured by pipette aspiration method. Physiol. Meas. 23(4):635–648, 2002.CrossRefGoogle Scholar
  41. 41.
    Mazuchowski, E., and L. Thibault. Biomechanical properties of the human spinal cord and pia matter. In: 2003 Summer Bioengineering Conference. Key Biscayne, FL: American Society of Mechanical Engineers, 2003.Google Scholar
  42. 42.
    Miller, K., et al. Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J. Biomech. 33(11):1369–1376, 2000.CrossRefGoogle Scholar
  43. 43.
    Norman, L. L., K. M. Stroka, and H. Aranda-Espinoza. Guiding axons in the central nervous system: a tissue-engineering approach. Tissue Eng. B Rev. 15(3):291-305, 2009.CrossRefGoogle Scholar
  44. 44.
    Norman, L., et al. Modification of cellular cholesterol content affects traction force, adhesion and cell spreading. Cel. Mol. Bioeng. 3(2):151–162, 2010.CrossRefMathSciNetGoogle Scholar
  45. 45.
    Odde, D. J., et al. Stochastic dynamics of the nerve growth cone and its microtubules during neurite outgrowth. Biotechnol. Bioeng. 50(4):452–461, 1996.CrossRefGoogle Scholar
  46. 46.
    Paszek, M. J., et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254, 2005.CrossRefMathSciNetGoogle Scholar
  47. 47.
    Pelham, Jr., R. J., and Y. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94(25):13661–13665, 1997.CrossRefGoogle Scholar
  48. 48.
    Peyton, S. R., and A. J. Putnam. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell. Physiol. 204(1):198–209, 2005.CrossRefGoogle Scholar
  49. 49.
    Prange, M. T., and S. S. Margulies. Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. 124(2):244–252, 2002.CrossRefGoogle Scholar
  50. 50.
    Rakic, P. Specification of cerebral cortical areas. Science 241(4862):170–176, 1988.CrossRefGoogle Scholar
  51. 51.
    Rice, D. S., and T. Curran. Role of the reelin signaling pathway in central nervous system development. Annu. Rev. Neurosci. 24:1005–1039, 2001.CrossRefGoogle Scholar
  52. 52.
    Rico, F., et al. Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(2 Pt 1):021914, 2005.CrossRefGoogle Scholar
  53. 53.
    Saha, K., et al. Substrate modulus directs neural stem cell behavior. Biophys. J. 95(9):4426–4438, 2008.CrossRefMathSciNetGoogle Scholar
  54. 54.
    Shi, P., et al. Dynamic force generation by neural stem cells. Cell. Mol. Bioeng. 2(4):464–474, 2009.CrossRefGoogle Scholar
  55. 55.
    Siechen, S., et al. Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals. Proc. Natl Acad. Sci. USA 106(31):12611–12616, 2009.CrossRefGoogle Scholar
  56. 56.
    Stroka, K. M., and H. Aranda-Espinoza. Neutrophils display biphasic relationship between migration and substrate stiffness. Cell Motil. Cytoskeleton 66(6):328–341, 2009.CrossRefGoogle Scholar
  57. 57.
    Tessier-Lavigne, M., and C. S. Goodman. The molecular biology of axon guidance. Science 274(5290):1123–1133, 1996.CrossRefGoogle Scholar
  58. 58.
    Tischler, A. S., et al. Nerve growth factor is a potent inducer of proliferation and neuronal differentiation for adult rat chromaffin cells in vitro. J. Neurosci. 13(4):1533–1542, 1993.Google Scholar
  59. 59.
    Tucker, K. L., M. Meyer, and Y. A. Barde. Neurotrophins are required for nerve growth during development. Nat. Neurosci. 4(1):29–37, 2001.CrossRefGoogle Scholar
  60. 60.
    Wang, Y. L., and R. J. Pelham, Jr. Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol. 298:489–496, 1998.CrossRefGoogle Scholar
  61. 61.
    Weisenhorn, A. L., et al. Deformation and height anomaly of soft surfaces studied with an AFM. Nanotechnology 4:106–113, 1993.CrossRefGoogle Scholar
  62. 62.
    Willits, R. K., and S. L. Skornia. Effect of collagen gel stiffness on neurite extension. J. Biomater. Sci. Polym. Ed. 15(12):1521–1531, 2004.CrossRefGoogle Scholar
  63. 63.
    Wong, J. Y., et al. Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 19:1908–1913, 2003.CrossRefGoogle Scholar
  64. 64.
    Wylie, S. R., and P. D. Chantler. Separate but linked functions of conventional myosins modulate adhesion and neurite outgrowth. Nat. Cell Biol. 3(1):88–92, 2001.CrossRefGoogle Scholar
  65. 65.
    Yeung, T., et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60(1):24–34, 2005.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  1. 1.Fischell Department of BioengineeringUniversity of Maryland at College ParkCollege ParkUSA

Personalised recommendations