We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Advertisement

Manipulation of Suspended Single Cells by Microfluidics and Optical Tweezers

Abstract

Chondrocytes and osteoblasts experience multiple stresses in vivo. The optimum mechanical conditions for cell health are not fully understood. This paper describes the optical and microfluidic mechanical manipulation of single suspended cells enabled by the μPIVOT, an integrated micron resolution particle image velocimeter (μPIV) and dual optical tweezers instrument (OT). In this study, we examine the viability and trap stiffness of cartilage cells, identify the maximum fluid-induced stresses possible in uniform and extensional flows, and compare the deformation characteristics of bone and muscle cells. These results indicate cell photodamage of chondrocytes is negligible for at least 20 min for laser powers below 30 mW, a dead cell presents less resistance to internal organelle rearrangement and deforms globally more than a viable cell, the maximum fluid-induced shear stresses are limited to ~15 mPa for uniform flows but may exceed 1 Pa for extensional flows, and osteoblasts show no deformation for shear stresses up to 250 mPa while myoblasts are more easily deformed and exhibit a modulated response to increasing stress. This suggests that global and/or local stresses can be applied to single cells without physical contact. Coupled with microfluidic sensors, these manipulations may provide unique methods to explore single cell biomechanics.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

References

  1. 1.

    Ashkin, A., and J. M. Dziedzic. Optical trapping and manipulation of viruses and bacteria. Science 235(4795):1517–1520, 1987.

  2. 2.

    Ashkin, A., J. M. Dziedzic, and T. Yamane. Optical trapping and manipulation of single cells using infrared-laser beams. Nature. 330(6150):769–771, 1987.

  3. 3.

    Bourret, L. A., and G. A. Rodan. The role of calcium in the inhibition of cAMP accumulation in epiphyseal cartilage cells exposed to physiological pressure. J. Cell Physiol. 88(3):353–362, 1976.

  4. 4.

    Bentley, B. J., and L. G. Leal. A computer-controlled four-roll mill for investigations of particle and drop dynamics in two-dimensional linear shear flows. J. Fluid Mech. 167:219–240, 1986.

  5. 5.

    Bentley, B. J., and L. G. Leal. An experimental investigation of drop deformation and break-up in steady, two-dimensional flows. J. Fluid Mech. 167:241–283, 1986.

  6. 6.

    Bull, B., C. Feo, and M. Bessis. Behavior of elliptocytes under shear stress in the rheoscope and ektacytometer. Cytometry 3(4):300–304, 1983.

  7. 7.

    Cerf, A., J. C. Cau, C. Vieu, and E. Dague. Nanomechanical properties of dead or alive single-patterned bacteria. Langmuir 25(10):5731–5736, 2009.

  8. 8.

    Chen, N. X., K. D. Ryder, F. M. Pavalko, C. H. Turner, D. B. Burr, J. Qiu, and R. L. Duncan. Ca2+ regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. Am. J. Physiol. Cell Physiol. 278:C989–C997, 2000.

  9. 9.

    Declercq, H., N. Van den Vreken, E. De Maeyer, R. Verbeeck, E. Schacht, L. De Ridder, and M. Cornelissen. Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials 25:757–768, 2004.

  10. 10.

    Donahue, T. L., T. R. Haut, C. E. Yellowley, H. J. Donahue, and C. R. Jacobs. Mechanosensitivity of bone cells to oscillating fluid flow induced shear stress may be modulated by chemotransport. J. Biomech. 36:1363–1371, 2003.

  11. 11.

    Eggleton, C. D., Y. P. Pawar, and K. J. Stebe. Insoluble surfactants on a drop in an extensional flow: a generalization of the stagnated surface limit to deforming interfaces. J. Fluid Mech. 385:79–99, 1999.

  12. 12.

    Evans, E., and A. Yeung. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 56(1):151–160, 1989.

  13. 13.

    Fallman, E., and O. Axner. Influence of a glass–water interface on the on-axis trapping of micrometer-sized spherical objects by optical tweezers. Appl. Opt. 42:3915, 2003.

  14. 14.

    Felder, S., and E. L. Elson. Mechanics of fibroblast locomotion: quantitative analysis of forces and motions at the leading lamellas of fibroblasts. J. Cell Biol. 111:2513–2526, 1990.

  15. 15.

    Ferraro, J. T., M. Daneshmand, R. Bizios, and V. Rizzo. Depletion of plasma membrane cholesterol dampens hydrostatic pressure and shear stress-induced mechanotransduction pathways in osteoblast cultures. Am. J. Physiol. Cell Physiol. 286:C831–C839, 2004.

  16. 16.

    Francius, G., O. Domenech, M. P. Mingeot-Leclercq, and Y. F. J. Dufrene. Direct observation of Staphylococcus aureus cell wall digestion by Lysostaphin. J. Bacteriol. 190(24):7904–7909, 2008.

  17. 17.

    Glantschnig, H., F. Varga, and M. Rumpler. Prostacyclin (PGI2): a potential mediator of c-fos expression induced by hydrostatic pressure in osteoblastic cells. Eur. J. Clin. Invest. 26:533–548, 1996.

  18. 18.

    Guck, J., R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs. The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81(2):767–784, 2001.

  19. 19.

    Happel, J., and H. Brenner. Low Reynolds Number Hydrodynamics (2nd ed.). Dordecht, the Netherlands: Kluwer Academic, p. 553, 1991.

  20. 20.

    Hassan, E., W. F. Heinz, M. D. Antonik, N. P. D’Costa, S. Nageswaran, C. A. Schoenenberger, and J. H. Hoh. Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 74:1564–1578, 1998.

  21. 21.

    Hochmuth, R. M., and R. E. Waugh. Erythrocyte membrane elasticity and viscosity. Annu. Rev. Physiol. 49:209–219, 1987.

  22. 22.

    Hudson, S. D., F. R. Phelan, M. D. Handler, J. T. Cabral, K. B. Migler, and E. J. Amis. Microfluidic analog of the four-roll mill. Appl. Phys. Lett. 85(2):335–337, 2004.

  23. 23.

    Im, K. B., H. I. Kim, I. J. Joo, C. H. Oh, S. H. Song, P. S. Kim, and B. C. Park. Optical trapping forces by a focused beam through two media with different refractive indices. Opt. Commun. 226:25–31, 2003.

  24. 24.

    Jaasma, M., W. Jackson, R. Tang, and T. Keaveny. Adaptation of cellular mechanical behavior to mechanical loading for osteoblastic cells. J. Biomech. 40(9):1938–1945, 2007.

  25. 25.

    Johnson, D. L., T. N. McAllister, and J. A. Frangos. Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts. Am. J. Physiol. Endocrinol. Metab. 271:E205–E208, 1996.

  26. 26.

    Jones, G. E. Human Cell Culture Protocols. Totowa, NJ: Humana Press, 1996.

  27. 27.

    Jones, W. R., H. P. Ting-Beall, G. M. Lee, S. S. Kelley, R. M. Hochmuth, and F. Guilak. Alterations in the Young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J. Biomech. 32(2):119–127, 1999.

  28. 28.

    Kamm, R. D., and M. R. Kaazempur-Mofrad. On the molecular basis for mechanotransduction. Mech. Chem. Biosystems 1(3):201–209, 2004.

  29. 29.

    Kaneta, T., J. Makihara, and T. Imasaka. An “optical channel”: a technique for the evaluation of biological cell elasticity. Anal. Chem. 73(24):5791–5795, 2001.

  30. 30.

    Kapur, S., D. J. Baylink, and K. H. W. Lau. Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone 32(3):241–251, 2003.

  31. 31.

    Kim, J., M. Junkin, D. H. Kim, S. Kwon, Y. S. Shin, P. K. Wong, and B. K. Gale. Applications, techniques, and microfluidic interfacing for nanoscale biosensing. Microfluid. Nanofluid. 7:149–167, 2009.

  32. 32.

    Koay, E. J., A. C. Shieh, and K. A. Athanasiou. Creep indentation of single cells. J. Biomech. Eng. 125(3):334–341, 2003.

  33. 33.

    Kohles, S. S., N. Nève, J. D. Zimmerman, and D. C. Tretheway. Mechanical stress analysis of microfluidic environments designed for isolated biological cell investigations. ASME J. Biomech. Eng. 131:121006(10 pages), 2009.

  34. 34.

    Kraly, J. R., R. E. Holcomb, Q. Guan, and C. S. Henry. Review: microfluidics applications in metabolomics and metabolic profiling. Anal. Chem. Acta 653:23–35, 2009.

  35. 35.

    Kuo, S. C., and M. P. Sheetz. Optical tweezers in cell biology. Trends Cell Biol. 2:116–118, 1992.

  36. 36.

    Kwon, R. Y., and C. R. Jacobs. Time-dependent deformations in bone cells exposed to fluid flow in vitro: investigating the role of cellular deformation in fluid flow-induced signaling. J. Biomech. 40(14):3162–3168, 2007.

  37. 37.

    Lang, M., C. Asbury, J. Shaevitz, and S. M. Block. An automated two-dimensional optical force clamp for single molecule studies. Biophys. J. 83:491–501, 2002.

  38. 38.

    Leal, L. G. Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis. Boston, MA: Butterworth-Heinemann, 1992.

  39. 39.

    Leipzig, N. D., and K. A. Athanasiou. Unconfined creep compression of chondrocytes. J. Biomech. 38:77–85, 2005.

  40. 40.

    Liang, H., K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns. Wavelength dependence of cell cloning efficiency after optical trapping. Biophys. J. 70:1529–1533, 1996.

  41. 41.

    Liao, G.-B., P. B. Bareil, Y. Sheng, and A. Chiou. One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells. Opt. Express 16(3):1996–2004, 2008.

  42. 42.

    Liu, Y., D. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg. Evidence for localized cell heating induced by infrared optical tweezers. Biophys. J. 68:2137–2144, 1995.

  43. 43.

    Liu, Y., G. J. Sonek, M. W. Berns, and B. J. Tromberg. Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry. Biophys. J. 71:2158, 1996.

  44. 44.

    McAllister, T. N., and J. A. Frangos. Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways. J. Bone Miner. Res. 14:930–936, 1999.

  45. 45.

    Meinhart, C. D., S. Wereley, and J. Santiago. A PIV algorithm for estimating time-averaged velocity fields. J. Fluid. Eng. 122:285, 2000.

  46. 46.

    Mills, J. P., L. Qie, M. Dao, C. T. Lim, and S. Suresh. Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. MCB 1(3):169–180, 2004.

  47. 47.

    Mullender, M. G., S. J. Dijcks, R. G. Bacabac, C. M. Semeins, J. J. W. A. Van Loon, and J. Klein-Nulend. Release of nitric oxide, but not prostaglandin E2, by bone cells depends on fluid flow frequency. J. Orthop. Res. 24(6):1170–1177, 2006.

  48. 48.

    Neuman, K. C., E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block. Characterization of photodamage to Escherichia coli in optical traps. Biophys. J. 77(5):2856, 1999.

  49. 49.

    Nève, N., J. K. Lingwood, J. Zimmerman, S. S. Kohles, and D. C. Tretheway. The μPIVOT: an integrated particle image velocimeter and optical tweezers instrument for microenvironment investigations. Meas. Sci. Technol. 10(9):095403(11 pp.), 2008.

  50. 50.

    Nguyen, M., and S. Wereley. Fundamentals and Applications of Microfluidics. Norwood, MA: Artech Hous Publishers, 2002.

  51. 51.

    Parkkinen, J. J., J. Ikonen, M. J. Laman, J. Laakonen, M. Tammi, and H. J. Helminen. Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants. Arch. Biochem. Biophys. 300:458–465, 1993.

  52. 52.

    Pasternak, C., and E. L. Elson. Lymphocyte mechanical response triggered by cross-linking surface receptors. J. Cell Biol. 100:860–872, 1985.

  53. 53.

    Peake, M. A., L. M. Cooling, J. L. Magnay, P. B. M. Thomas, and A. J. El Haj. Selected contribution: regulatory pathways involved in mechanical induction of c-fos gene expression in bone cells. J. Appl. Physiol. 89(6):2498–2507, 2000.

  54. 54.

    Petersen, N. O., W. B. McConnaughey, and E. L. Elson. Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin b. Proc. Natl Acad. Sci. USA 79:5327–5331, 1982.

  55. 55.

    Radmacher, M. Measuring the elastic properties of living cells by the atomic force microscope. Methods Cell Biol. 68:67–90, 2002.

  56. 56.

    Ramaswamy, S., and L. G. Leal. The deformation of a viscoelastic drop subjected to steady uniaxial extensional flow of a newtonian fluid. J. Non-Newtonian Fluid Mech. 85:127, 1999.

  57. 57.

    Reich, K. M., C. V. Gay, and J. A. Frangos. Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. J. Cell. Physiol. 143:100–104, 1990.

  58. 58.

    Roelofsen, J., J. Klein-Nulend, and E. H. Burger. Mechanical stimulation by intermittent hydrostatic compression promotes bone-specific gene expression in vitro. J. Biomech. 28:1493–1503, 1995.

  59. 59.

    Rotsch, C., and M. Radmacher. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts—an atomic force microscopy study. Biophys. J. 78:520–535, 2000.

  60. 60.

    Sato, M., M. J. Levesque, and R. M. Nerem. An application of the micropipette technique to the measurement of the mechanical properties of cultured bovine aortic endothelial cells. J. Biomech. Eng. 109:27–34, 1987.

  61. 61.

    Schmid-Schönbein, G. W., K. L. Sung, H. Tözeren, R. Skalak, and S. Chien. Passive mechanical properties of human leukocytes. Biophys. J. 36(1):243–256, 1981.

  62. 62.

    Schmid-Schönbein, H., R. Wells, and J. Goldstone. Influence of deformability of human red cells upon blood viscosity. Circ. Res. 25:131–143, 1969.

  63. 63.

    Sleep, J., D. Wilson, R. Simmons, and W. Gratzer. Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study. Biophys. J. 77:3085–3095, 1999.

  64. 64.

    Smith, L. R., S. F. Rusk, S. F. Ellison, P. Wessells, K. Tsuchiya, D. R. Carter, W. E. Caler, L. I. Sandel, and D. J. Schurman. In vitro stimulation of articular chondrocyte mRNA and extracellular matrix synthesis by hydrostatic pressure. J. Orthop. Res. 14:53–60, 1996.

  65. 65.

    Sunk, I. G., S. Trattnig, W. B. Graninger, L. Amoyo, B. Tuerk, C. W. Steiner, J. S. Smolen, and K. Bobacz. Impairment of chondrocyte biosynthetic activity by exposure to 3-tesla high-field magnetic resonance imaging is temporary. Arthritis Res. Ther. 8(4):R106, 2006.

  66. 66.

    Thoumine, O., A. Ott, O. Cardoso, and J.-J. Meister. Microplates: a new tool for manipulation and mechanical perturbation of individual cells. J. Biochem. Biophys. Methods 39:47–62, 1999.

  67. 67.

    Titushkin, I., and M. Cho. Distinct membrane mechanical properties of human mesenchymal stem cells determined using laser optical tweezers. Biophys. J. 90:2582–2591, 2006.

  68. 68.

    Toyoda, T., B. B. Seedhom, J. Q. Yao, J. Kirkham, S. Brookes, and W. A. Bonass. Hydrostatic pressure modulates proteoglycan metabolism in chondrocytes seeded in agarose. Arthritis Rheum. 48(10):2865–2872, 2003.

  69. 69.

    Tretheway, D. C., and L. G. Leal. Surfactant and viscoelastic effects on drop deformation in 2-D extensional flow. AIChE J. 45(5):929–937, 1999.

  70. 70.

    Tretheway, D. C., and L. G. Leal. Deformation and relaxation of Newtonian drops in planar extensional flows of a Boger Fluid. J. Non-Newtonian Fluid Mech. 99:81–108, 2001.

  71. 71.

    Tretheway, D. C., and C. D. Meinhart. Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 14:L9–L12, 2002.

  72. 72.

    Wei, M.-T., A. Zaorski, H. C. Yalcin, J. Wang, M. Hallow, S. N. Ghadiali, A. Chiou, and H. D. Ou-Yang. A comparative study of living cell micromechanical properties by oscillatory optical tweezers. Opt. Express 16:8594–8603, 2008.

  73. 73.

    Wilkes, R. P., and K. A. Athanasiou. The intrinsic incompressibility of osteoblast-like cells. Tissue Eng. 2(3):167–181, 1996.

  74. 74.

    Wu, L., M. Tsutahara, L. Kim, and M. Ha. Numerical simulations of droplet formation in a cross-junction microchannel by the lattice Boltzmann method. Int. J. Numer. Meth. Fluids. 57:793–810, 2008.

  75. 75.

    Yang, C. H., K. S. Huang, P. W. Lin, and Y. C. Lin. Using a cross-flow microfluidic chip and external crosslinking reaction for monodisperse TPP-chitosan microparticles. Sens. Actuators B Chem. 124(2):510–516, 2007.

  76. 76.

    Yi, C. Q., C. W. Li, S. L. Ji, and M. S. Yang. Microfluidics technology for manipulation and analysis of biological cells. Anal. Chim. Acta 560:1–23, 2006.

  77. 77.

    You, J., G. C. Reilly, X. Zhen, C. E. Yellowley, Q. Chen, H. J. Donahue, and C. R. Jacobs. Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts. J. Biol. Chem. 276:13365–13371, 2001.

Download references

Acknowledgments

Development and validation of the μPIVOT was funded by a National Science Foundation Major Research Instrumentation grant (CBET-0521637) and the Engineering Technology and Industry Council. Further validation and preliminary single-cell studies were supported by an Academic Research Enhancement Award from the National Institutes of Health (EB007077). Additional support for Nathalie Nève provided by the Maseeh Fellowship. Special thanks to Dr. Randy Zelick of the Portland State University Department of Biology for providing additional cell expertise.

Author information

Correspondence to Derek C. Tretheway.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 1013 kb)

Supplementary material 1 (WMV 1013 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nève, N., Kohles, S.S., Winn, S.R. et al. Manipulation of Suspended Single Cells by Microfluidics and Optical Tweezers. Cel. Mol. Bioeng. 3, 213–228 (2010). https://doi.org/10.1007/s12195-010-0113-3

Download citation

Keywords

  • Chondrocytes
  • Osteoblasts
  • Applied fluid and mechanical stresses
  • Cell biomechanics
  • Cell deformation