Advertisement

Cellular and Molecular Bioengineering

, Volume 3, Issue 1, pp 50–59 | Cite as

Mechanical Forces in Endothelial Cells during Firm Adhesion and Early Transmigration of Human Monocytes

  • Zhijun Liu
  • Nathan J. Sniadecki
  • Christopher S. ChenEmail author
Article

Abstract

Transmigration of leukocytes across the endothelial barrier is a tightly controlled process involving multiple steps, including rolling adhesion, firm adhesion, and then penetration of leukocytes through the endothelial monolayer. While the key molecular signals have been described in great detail, we are only just beginning to unveil the mechanical forces involved in this process. Here, using a microfabricated system that reports traction forces generated by cells, we describe forces generated by endothelial cells during monocyte firm adhesion and transmigration. Average traction force across the endothelial monolayer increased dramatically when monocytes firmly adhered and transmigrated. Interestingly, the endothelial cell that was in direct contact with the monocyte exhibited much larger traction forces relative to its neighbors, and the direction of these traction forces aligned centripetally with respect to the monocyte. The increase in traction force occurred in the local subcellular zone of monocyte adhesion, and dissipated rapidly with distance. To begin to characterize the basis for this mechanical effect, we show that beads coated with anti-ICAM-1 or VCAM-1 antibodies bound to monolayers could reproduce this effect. Taken together, this study provides a new approach to examining the role of cellular mechanics in regulating leukocyte transmigration through the endothelium.

Keywords

Transmigration Endothelial cells Mechanical forces Mechanotransduction Microposts MEMS 

Notes

Acknowledgments

We thank S. Shaw and F. Luscinskas for providing the GFP-tagged VE-cadherin adenovirus and D. Cohen for helpful discussions and technical support. This work was supported in part by grants from the National Institutes of Health (EB00262, HL73305, GM74048), the Army Research Office Multidisciplinary University Research Initiative, and the Material Research Science and Engineering Center of the Univ. of Pennsylvania and the RESBIO resource center of Rutgers University. N.J.S. acknowledges financial support from Ruth L. Kirschstein National Research Service Awards, and N.J.S. received additional support from the Hartwell Foundation.

Supplementary material

12195_2010_105_MOESM1_ESM.tif (6.1 mb)
SUPPLEMENTARY FIGURE 1 Traction forces in TEM-FA and TEM-ET monolayers. (a) Bar graph indicating increase in average traction force in both TEM-FA and TEM-ET monolayers during transmigration with no significant difference between the two (p = 0.10). *p < 0.05, indicates comparison against Ctrl; #p < 0.05, indicates comparison against TNF. Ctrl, TNF, and TEM conditions were plotted as references. (b) Bar graph indicating a significant difference in average traction forces between Ct and NCt cells in both TEM-FA and TEM-ET conditions. *p < 0.05, indicates comparison against Ct. Ctrl, TNF, and TEM conditions were plotted as references (PDF 6,224 kb)

References

  1. 1.
    Alevriadou, B. R. CAMs and Rho small GTPase: gatekeepers for leukocyte transendothelial migration. Focus on “VCAM-1-mediated Rac signaling controls endothelial cell–cell contacts and leukocyte transmigration”. Am. J. Physiol. Cell Physiol. 285:C250–C252, 2003.Google Scholar
  2. 2.
    Allingham, M. J., J. D. van Buul, and K. Burridge. Icam-1-mediated, Src- and Pyk2-dependent vascular endothelial cadherin tyrosine phosphorylation is required for leukocyte transendothelial migration. J. Immunol. 179:4053–4064, 2007.Google Scholar
  3. 3.
    Allport, J. R., H. Ding, T. Collins, M. E. Gerritsen, and F. W. Luscinskas. Endothelial-dependent mechanisms regulate leukocyte transmigration: a process involving the proteasome and disruption of the vascular endothelial-cadherin complex at endothelial cell-to-cell junctions. J. Exp. Med. 186:517–527, 1997.CrossRefGoogle Scholar
  4. 4.
    Allport, J. R., W. A. Muller, and F. W. Luscinskas. Monocytes induce reversible focal changes in vascular endothelial cadherin complex during transendothelial migration under flow. J. Cell Biol. 148:203–216, 2000.CrossRefGoogle Scholar
  5. 5.
    Barreiro, O., M. Yanez-Mo, J. M. Serrador, M. C. Montoya, M. Vicente-Manzanares, R. Tejedor, H. Furthmayr, and F. Sanchez-Madrid. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J. Cell Biol. 157:1233–1245, 2002.CrossRefGoogle Scholar
  6. 6.
    Bochner, B. S., F. W. Luscinskas, M. A. Gimbrone, Jr., W. Newman, S. A. Sterbinsky, C. P. Derse-Anthony, D. Klunk, and R. P. Schleimer. Adhesion of human basophils, eosinophils, and neutrophils to interleukin 1-activated human vascular endothelial cells: contributions of endothelial cell adhesion molecules. J. Exp. Med. 173:1553–1557, 1991.CrossRefGoogle Scholar
  7. 7.
    Boyd, A. W., S. O. Wawryk, G. F. Burns, and J. V. Fecondo. Intercellular adhesion molecule 1 (ICAM-1) has a central role in cell–cell contact-mediated immune mechanisms. Proc. Natl. Acad. Sci. USA 85:3095–3099, 1988.CrossRefGoogle Scholar
  8. 8.
    Braunersreuther, V., and F. Mach. Leukocyte recruitment in atherosclerosis: Potential targets for therapeutic approaches? Cell. Mol. Life Sci. 63:2079–2088, 2006.CrossRefGoogle Scholar
  9. 9.
    Carman, C. V., C. D. Jun, A. Salas, and T. A. Springer. Endothelial cells proactively form microvilli-like membrane projections upon intercellular adhesion molecule 1 engagement of leukocyte lfa-1. J. Immunol. 171:6135–6144, 2003.Google Scholar
  10. 10.
    Cernuda-Morollon, E., and A. J. Ridley. Rho gtpases and leukocyte adhesion receptor expression and function in endothelial cells. Circ. Res. 98:757–767, 2006.CrossRefGoogle Scholar
  11. 11.
    Cook-Mills, J. M., J. D. Johnson, T. L. Deem, A. Ochi, L. Wang, and Y. Zheng. Calcium mobilization and Rac1 activation are required for VCAM-1 (vascular cell adhesion molecule-1) stimulation of nadph oxidase activity. Biochem. J. 378:539–547, 2004.CrossRefGoogle Scholar
  12. 12.
    Eddy, R. J., L. M. Pierini, F. Matsumura, and F. R. Maxfield. Ca2+-dependent myosin ii activation is required for uropod retraction during neutrophil migration. J. Cell Sci. 113(Pt 7):1287–1298, 2000.Google Scholar
  13. 13.
    Etienne, S., P. Adamson, J. Greenwood, A. D. Strosberg, S. Cazaubon, and P. O. Couraud. ICAM-1 signaling pathways associated with Rho activation in microvascular brain endothelial cells. J. Immunol. 161:5755–5761, 1998.Google Scholar
  14. 14.
    Glass, C. K., and J. L. Witztum. Atherosclerosis. The road ahead. Cell 104:503–516, 2001.CrossRefGoogle Scholar
  15. 15.
    Hordijk, P. L. Endothelial signalling events during leukocyte transmigration. FEBS J. 273:4408–4415, 2006.CrossRefGoogle Scholar
  16. 16.
    Ionescu, C. V., G. Cepinskas, J. Savickiene, M. Sandig, and P. R. Kvietys. Neutrophils induce sequential focal changes in endothelial adherens junction components: Role of elastase. Microcirculation 10:205–220, 2003.Google Scholar
  17. 17.
    Kaneider, N. C., A. J. Leger, and A. Kuliopulos. Therapeutic targeting of molecules involved in leukocyte-endothelial cell interactions. FEBS J. 273:4416–4424, 2006.CrossRefGoogle Scholar
  18. 18.
    Kataoka, N., K. Iwaki, K. Hashimoto, S. Mochizuki, Y. Ogasawara, M. Sato, K. Tsujioka, and F. Kajiya. Measurements of endothelial cell-to-cell and cell-to-substrate gaps and micromechanical properties of endothelial cells during monocyte adhesion. Proc. Natl. Acad. Sci. USA 99:15638–15643, 2002.CrossRefGoogle Scholar
  19. 19.
    Lemmon, C. A., N. J. Sniadecki, S. A. Ruiz, J. L. Tan, L. H. Romer, and C. S. Chen. Shear force at the cell–matrix interface: enhanced analysis for microfabricated post array detectors. Mech. Chem. Biosyst. 2:1–16, 2005.Google Scholar
  20. 20.
    Millan, J., and A. J. Ridley. Rho gtpases and leucocyte-induced endothelial remodelling. Biochem. J. 385:329–337, 2005.CrossRefGoogle Scholar
  21. 21.
    Nelson, C. M., R. P. Jean, J. L. Tan, W. F. Liu, N. J. Sniadecki, A. A. Spector, and C. S. Chen. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl. Acad. Sci. USA 102:11594–11599, 2005.CrossRefGoogle Scholar
  22. 22.
    Osborn, L., C. Hession, R. Tizard, C. Vassallo, S. Luhowskyj, G. Chi-Rosso, and R. Lobb. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 59:1203–1211, 1989.CrossRefGoogle Scholar
  23. 23.
    Panes, J., M. Perry, and D. N. Granger. Leukocyte-endothelial cell adhesion: Avenues for therapeutic intervention. Br. J. Pharmacol. 126:537–550, 1999.CrossRefGoogle Scholar
  24. 24.
    Petri, B., and M. G. Bixel. Molecular events during leukocyte diapedesis. FEBS J. 273:4399–4407, 2006.CrossRefGoogle Scholar
  25. 25.
    Pollard, T. D., and G. G. Borisy. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465, 2003.CrossRefGoogle Scholar
  26. 26.
    Rabodzey, A., P. Alcaide, F. W. Luscinskas, and B. Ladoux. Mechanical forces induced by the transendothelial migration of human neutrophils. Biophys. J. 95:1428–1438, 2008.CrossRefGoogle Scholar
  27. 27.
    Rao, R. M., L. Yang, G. Garcia-Cardena, and F. W. Luscinskas. Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circ. Res. 101:234–247, 2007.CrossRefGoogle Scholar
  28. 28.
    Ross, R. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340:115–126, 1999.CrossRefGoogle Scholar
  29. 29.
    Shaw, S. K., P. S. Bamba, B. N. Perkins, and F. W. Luscinskas. Real-time imaging of vascular endothelial-cadherin during leukocyte transmigration across endothelium. J. Immunol. 167:2323–2330, 2001.Google Scholar
  30. 30.
    Springer, T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 76:301–314, 1994.CrossRefGoogle Scholar
  31. 31.
    Strey, A., A. Janning, H. Barth, and V. Gerke. Endothelial rho signaling is required for monocyte transendothelial migration. FEBS Lett. 517:261–266, 2002.CrossRefGoogle Scholar
  32. 32.
    Tan, J. L., J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen. Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proc. Natl. Acad. Sci. USA 100:1484–1489, 2003.CrossRefGoogle Scholar
  33. 33.
    Thompson, P. W., A. M. Randi, and A. J. Ridley. Intercellular adhesion molecule (ICAM)-1, but not ICAM-2, activates RhoA and stimulates c-fos and RhoA transcription in endothelial cells. J. Immunol. 169:1007–1013, 2002.Google Scholar
  34. 34.
    van Buul, J. D., M. J. Allingham, T. Samson, J. Meller, E. Boulter, R. Garcia-Mata, and K. Burridge. Rhog regulates endothelial apical cup assembly downstream from ICAM1 engagement and is involved in leukocyte trans-endothelial migration. J. Cell Biol. 178:1279–1293, 2007.CrossRefGoogle Scholar
  35. 35.
    van Nieuw Amerongen, G. P., S. van Delft, M. A. Vermeer, J. G. Collard, and V. W. van Hinsbergh. Activation of rhoa by thrombin in endothelial hyperpermeability: role of Rho kinase and protein tyrosine kinases. Circ. Res. 87:335–340, 2000.Google Scholar
  36. 36.
    van Wetering, S., N. van den Berk, J. D. van Buul, F. P. Mul, I. Lommerse, R. Mous, J. P. ten Klooster, J. J. Zwaginga, and P. L. Hordijk. VCAM-1-mediated Rac signaling controls endothelial cell–cell contacts and leukocyte transmigration. Am. J. Physiol. Cell Physiol. 285:C343–C352, 2003.Google Scholar
  37. 37.
    Vestweber, D. Adhesion and signaling molecules controlling the transmigration of leukocytes through endothelium. Immunol. Rev. 218:178–196, 2007.CrossRefGoogle Scholar
  38. 38.
    Wojciak-Stothard, B., L. Williams, and A. J. Ridley. Monocyte adhesion and spreading on human endothelial cells is dependent on rho-regulated receptor clustering. J. Cell Biol. 145:1293–1307, 1999.CrossRefGoogle Scholar
  39. 39.
    Worthylake, R. A., and K. Burridge. Leukocyte transendothelial migration: Orchestrating the underlying molecular machinery. Curr. Opin. Cell. Biol. 13:569–577, 2001.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Zhijun Liu
    • 1
  • Nathan J. Sniadecki
    • 1
  • Christopher S. Chen
    • 1
    Email author
  1. 1.Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations