Advertisement

Optimization by Response Surface Methodology of Confluent and Aligned Cellular Monolayers for Nerve Guidance

  • Celinda M. Kofron
  • Diane Hoffman-KimEmail author
Article

Abstract

Anisotropic tissue structures provide guidance for navigating neurons in vitro and in vivo. Here we optimized the generation of comparable anisotropic monolayers of astrocytes, endothelial cells, and Schwann cells as a first step toward determining which properties of anisotropic cells are sufficient for nerve guidance. The statistical experimental design method Design of Experiments (DOE) and the experimental analysis method Response Surface Methodology (RSM) were applied to improve efficiency and utility. Factors investigated included dimensions of microcontact printed protein patterns, cell density, and culture duration. Protein patterning spacing had the strongest influence. When cells initially aligned at borders and proliferated to fill in spaces, space between stripes was most effective when it was comparable to cell size. Maximizing the area of adhesive molecule coverage was also important for confluence of these types of cells. When cells adhered and aligned over the width of a stripe and broadened to fill spaces, space width about half the cell width was most effective. These findings suggest that if the mechanism of alignment, alignment at borders or over the width of the stripe, is predetermined and the cell size determined, the optimal size of the micropatterning for aligned monolayers of other cell types can be predicted. This study also demonstrates the effective use of DOE and RSM to probe cellular responses to various and multiple factors toward determination of optimal conditions for a desired cellular response.

Keywords

Design of Experiments (DOE) D-optimal Schwann cell Astrocyte Endothelial cell 

Notes

Acknowledgments

The authors would like to thank Christina Johnson and Grace Li for helpful discussion of the initial experimental set-up. They would also like to thank Carmichael Ong, Liane Livi, Cameron Rementer, and Jesse Thon for assistance with imaging and analysis. Si wafers were fabricated at the BioMEMS Resource Center with the generous assistance of Octavio Hurtado. This work was funded by an NSF Career Award and NIH R01 EB005722-01A2 to DHK and an AAUW Selected Professions dissertation fellowship to CK.

Supplementary material

Supplementary material 1 (MOV 25785 kb)

Supplementary material 2 (MOV 23687 kb)

Supplementary material 3 (MOV 35560 kb)

12195_2009_87_MOESM4_ESM.docx (100 kb)
Supplementary material 4 (DOCX 100 kb)

References

  1. 1.
    Alexander, J. K., B. Fuss, and R. J. Colello. Electric field-induced astrocyte alignment directs neurite outgrowth. Neuron Glia Biol. 2:93–103, 2006.CrossRefGoogle Scholar
  2. 2.
    Anderson, P. N., and M. Turmaine. Axonal regeneration through arterial grafts. J. Anat. 147:73, 1986.Google Scholar
  3. 3.
    Biran, R., M. D. Noble, and P. A. Tresco. Directed nerve outgrowth is enhanced by engineered glial substrates. Exp. Neurol. 184:141–152, 2003.CrossRefGoogle Scholar
  4. 4.
    Borgens, R. B., R. Shi, T. J. Mohr, and C. B. Jaeger. Mammalian cortical astrocytes align themselves in a physiological voltage gradient. Exp. Neurol. 128:41–49, 1994.CrossRefGoogle Scholar
  5. 5.
    Brook, G. A., J. M. Lawrence, B. Shah, and G. Raisman. Extrusion transplantation of Schwann cells into the adult rat thalamus induces directional host axon growth. Exp. Neurol. 126:31–43, 1994.CrossRefGoogle Scholar
  6. 6.
    Bruder, J. M., A. P. Lee, and D. Hoffman-Kim. Biomimetic materials replicating Schwann cell topography enhance neuronal adhesion and neurite alignment in vitro. J. Biomater. Sci. Polym. Ed. 18:967–982, 2007.CrossRefGoogle Scholar
  7. 7.
    Bunge, R. P. and C. Fernandez-Valle. The biology of Schwann cells. In: Neuroglia, edited by H. Kettenmann and B. R. Ransom. Oxford: Oxford University Press, 1995, pp. 44–57.Google Scholar
  8. 8.
    Chen, C. S., M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber. Geometric control of cell life and death. Science 276:1425–1428, 1997.CrossRefGoogle Scholar
  9. 9.
    Chiu, D. T., I. Janecka, T. J. Krizek, M. Wolff, and R. E. Lovelace. Autogenous vein graft as a conduit for nerve regeneration. Surgery 91:226–233, 1982.Google Scholar
  10. 10.
    Clark, P., P. Connolly, A. S. Curtis, J. A. Dow, and C. D. Wilkinson. Topographical control of cell behaviour. I. Simple step cues. Development 99:439–448, 1987.Google Scholar
  11. 11.
    Croarkin, C., P. Tobias, and C. Zey, Engineering Statistics Handbook. National Institute of and Technology and International SEMATECH, 2001.Google Scholar
  12. 12.
    Dalby, M. J., M. O. Riehle, S. J. Yarwood, C. D. Wilkinson, and A. S. Curtis. Nucleus alignment and cell signaling in fibroblasts: response to a micro-grooved topography. Exp. Cell Res. 284:274–282, 2003.CrossRefGoogle Scholar
  13. 13.
    David, S., and A. J. Aguayo. Axonal elongation into peripheral nervous system “Bridges” after central nervous system injury in adult rats. Science 214:931–933, 1981.CrossRefGoogle Scholar
  14. 14.
    den Braber, E. T., J. E. de Ruijter, L. A. Ginsel, A. F. von Recum, and J. A. Jansen. Quantitative analysis of fibroblast morphology on microgrooved surfaces with various groove and ridge dimensions. Biomaterials 17:2037–2044, 1996.CrossRefGoogle Scholar
  15. 15.
    Deumens, R., G. C. Koopmans, C. G. Den Bakker, V. Maquet, S. Blacher, W. M. Honig, R. Jerome, J. P. Pirard, H. W. Steinbusch, and E. A. Joosten. Alignment of glial cells stimulates directional neurite growth of cns neurons in vitro. Neuroscience 125:591–604, 2004.CrossRefGoogle Scholar
  16. 16.
    Dubey, N., P. C. Letourneau, and R. T. Tranquillo. Guided neurite elongation and Schwann cell invasion into magnetically aligned collagen in simulated peripheral nerve regeneration. Exp. Neurol. 158:338–350, 1999.CrossRefGoogle Scholar
  17. 17.
    El-Malah, Y., S. Nazzal, and N. M. Khanfar. D-optimal mixture design: optimization of ternary matrix blends for controlled zero-order drug release from oral dosage forms. Drug Dev. Ind. Pharm. 32:1207–1218, 2006.CrossRefGoogle Scholar
  18. 18.
    Falconnet, D., G. Csucs, H. Michelle Grandin, and M. Textor. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27:3044–3063, 2006.CrossRefGoogle Scholar
  19. 19.
    Feinberg, A. W., W. R. Wilkerson, C. A. Seegert, A. L. Gibson, L. Hoipkemeier-Wilson, and A. B. Brennan. Systematic variation of microtopography, surface chemistry and elastic modulus and the state dependent effect on endothelial cell alignment. J. Biomed. Mater. Res. A 86A:522–534, 2007.Google Scholar
  20. 20.
    Foidart-Dessalle, M., A. Dubuisson, A. Lejeune, A. Severyns, Y. Manassis, P. Delree, J. M. Crielaard, R. Bassleer, and G. Lejeune. Sciatic nerve regeneration through venous or nervous grafts in the rat. Exp. Neurol. 148:236–246, 1997.CrossRefGoogle Scholar
  21. 21.
    Glasby, M. A., S. G. Gschmeissner, R. J. I. Hitchcock, and C. L. H. Huang. The dependence of nerve regeneration through muscle grafts in the rat on the availability and orientation of basement membrane. J. Neurocytol. 15:497–510, 1986.CrossRefGoogle Scholar
  22. 22.
    Gomes, F. C., T. C. Spohr, R. Martinez, and V. Moura Neto. Cross-talk between neurons and glia: highlights on soluble factors. Braz. J. Med. Biol. Res. 34:611–620, 2001.Google Scholar
  23. 23.
    Hall, S. Axonal regeneration through acellular muscle grafts. J. Anat. 190:57–71, 1997.CrossRefGoogle Scholar
  24. 24.
    Hofstetter, C. P., E. J. Schwarz, D. Hess, J. Widenfalk, A. El Manira, D. J. Prockop, and L. Olson. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc. Natl Acad. Sci. USA 99:2199–2204, 2002.CrossRefGoogle Scholar
  25. 25.
    Kalil, S. J., F. Maugeri, and M. I. Rodrigues. Response surface analysis and simulation as a tool for bioprocess design and optimization. Process Biochem. 35:539–550, 2000.CrossRefGoogle Scholar
  26. 26.
    Keynes, R. J., W. G. Hopkins, and L. H. Huang. Regeneration of mouse peripheral nerves in degenerating skeletal muscle: guidance by residual muscle fibre basement membrane. Brain Res. 295:275–281, 1984.CrossRefGoogle Scholar
  27. 27.
    Li, G. N. Y., and D. Hoffman-Kim. Evaluation of neurite outgrowth anisotropy using a novel application of circular analysis. J. Neurosci. Methods 174:202–217, 2008.CrossRefGoogle Scholar
  28. 28.
    Li, Y., Y. Sauve, D. Li, R. D. Lund, and G. Raisman. Transplanted olfactory ensheathing cells promote regeneration of cut adult rat optic nerve axons. J. Neurosci. 23:7783–7788, 2003.Google Scholar
  29. 29.
    Li, X., T. Xu, X. Ma, K. Guo, L. Kai, Y. Zhao, X. Jia, and Y. Ma. Optimization of culture conditions for production of cis-epoxysuccinic acid hydrolase using response surface methodology. Bioresour. Technol. 99:5391–5396, 2008.CrossRefGoogle Scholar
  30. 30.
    Lumor, S. E., and C. C. Akoh. Enzymatic incorporation of stearic acid into a blend of palm olein and palm kernel oil: optimization by response surface methodology. J. Am. Oil Chem. Soc. 82:421–426, 2005.CrossRefGoogle Scholar
  31. 31.
    Makita, T., H. M. Sucov, C. E. Gariepy, M. Yanagisawa, and D. D. Ginty. Endothelins are vascular-derived axonal guidance cues for developing sympathetic neurons. Nature 452:759–763, 2008.CrossRefGoogle Scholar
  32. 32.
    Malek, A. M., and S. Izumo. Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. J. Cell Sci. 109(Pt 4):713–726, 1996.Google Scholar
  33. 33.
    Maniotis, A. J., C. S. Chen, and D. E. Ingber. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl Acad. Sci. USA 94:849–854, 1997.CrossRefGoogle Scholar
  34. 34.
    Miller, C., H. Shanks, A. Witt, G. Rutkowski, and S. Mallapragada. Oriented Schwann cell growth on micropatterned biodegradable polymer substrates. Biomaterials 22:1263–1269, 2001.CrossRefGoogle Scholar
  35. 35.
    Nerem, R. M., M. J. Levesque, and J. F. Cornhill. Vascular endothelial morphology as an indicator of the pattern of blood flow. J. Biomech. Eng. 103:172–176, 1981.CrossRefGoogle Scholar
  36. 36.
    Pettigrew, D. B., and K. A. Crutcher. White matter of the cns supports or inhibits neurite outgrowth in vitro depending on geometry. J. Neurosci. 19:8358–8366, 1999.Google Scholar
  37. 37.
    Recknor, J. B., J. C. Recknor, D. S. Sakaguchi, and S. K. Mallapragada. Oriented astroglial cell growth on micropatterned polystyrene substrates. Biomaterials 25:2753–2767, 2004.CrossRefGoogle Scholar
  38. 38.
    Recknor, J. B., D. S. Sakaguchi, and S. K. Mallapragada. Growth and differentiation of astrocytes and neural progenitor cells on micropatterned polymer films. Ann. N. Y. Acad. Sci. 1049:24–27, 2005.CrossRefGoogle Scholar
  39. 39.
    Richardson, P. M., U. M. McGuinness, and A. J. Aguayo. Axons from cns neurons regenerate into pns grafts. Nature 284:264–265, 1980.CrossRefGoogle Scholar
  40. 40.
    Sabourin, L. A., and M. A. Rudnicki. The molecular regulation of myogenesis. Clin. Genet. 57:16, 2000.CrossRefGoogle Scholar
  41. 41.
    Schmalenberg, K. E., and K. E. Uhrich. Micropatterned polymer substrates control alignment of proliferating Schwann cells to direct neuronal regeneration. Biomaterials 26:1423–1430, 2005.CrossRefGoogle Scholar
  42. 42.
    Schmidt, A., K. Brixius, and W. Bloch. Endothelial precursor cell migration during vasculogenesis. Circ. Res. 101:125–136, 2007.CrossRefGoogle Scholar
  43. 43.
    Silver, J., M. A. Edwards, and P. Levitt. Immunocytochemical demonstration of early appearing astroglial structures that form boundaries and pathways along axon tracts in the fetal brain. J. Comp. Neurol. 328:415–436, 1993.CrossRefGoogle Scholar
  44. 44.
    Singer, M., R. H. Nordlander, and M. Egar. Axonal guidance during embryogenesis and regeneration in the spinal cord of the newt: the blueprint hypothesis of neuronal pathway patterning. J. Comp. Neurol. 185:1–21, 1979.CrossRefGoogle Scholar
  45. 45.
    Stepien, E., J. Stanisz, and W. Korohoda. Contact guidance of chick embryo neurons on single scratches in glass and on underlying aligned human skin fibroblasts. Cell Biol. Int. 23:105–116, 1999.CrossRefGoogle Scholar
  46. 46.
    Thompson, D. M., and H. M. Buettner. Schwann cell response to micropatterned laminin surfaces. Tissue Eng. 7:247–265, 2001.CrossRefGoogle Scholar
  47. 47.
    Thompson, D. M., and H. M. Buettner. Oriented Schwann cell monolayers for directed neurite outgrowth. Ann. Biomed. Eng. 32:1120–1130, 2004.CrossRefGoogle Scholar
  48. 48.
    Thompson, D. M., and H. M. Buettner. Neurite outgrowth is directed by Schwann cell alignment in the absence of other guidance cues. Ann. Biomed. Eng. 34:161–168, 2006.CrossRefGoogle Scholar
  49. 49.
    Tomanek, R. J. Formation of the coronary vasculature during development. Angiogenesis 8:273–284, 2005.CrossRefGoogle Scholar
  50. 50.
    Vartanian, K. B., S. J. Kirkpatrick, S. R. Hanson, and M. T. Hinds. Endothelial cell cytoskeletal alignment independent of fluid shear stress on micropatterned surfaces. Biochem. Biophys. Res. Commun. 371:787–792, 2008.CrossRefGoogle Scholar
  51. 51.
    Walboomers, X. F., H. J. Croes, L. A. Ginsel, and J. A. Jansen. Contact guidance of rat fibroblasts on various implant materials. J. Biomed. Mater. Res. 47:204–212, 1999.CrossRefGoogle Scholar
  52. 52.
    Walsh, J. F., M. E. Manwaring, and P. A. Tresco. Directional neurite outgrowth is enhanced by engineered meningeal cell-coated substrates. Tissue Eng. 11:1085–1094, 2005.CrossRefGoogle Scholar
  53. 53.
    Webb, A., P. Clark, J. Skepper, A. Compston, and A. Wood. Guidance of oligodendrocytes and their progenitors by substratum topography. J. Cell Sci. 108(Pt 8):2747–2760, 1995.Google Scholar
  54. 54.
    Wood, A., and P. Thorogood. An ultrastructural and morphometric analysis of an in vivo contact guidance system. Development 101:363–381, 1987.Google Scholar
  55. 55.
    Wu, C. C., Y. S. Li, J. H. Haga, R. Kaunas, J. J. Chiu, F. C. Su, S. Usami, and S. Chien. Directional shear flow and rho activation prevent the endothelial cell apoptosis induced by micropatterned anisotropic geometry. Proc. Natl Acad. Sci. USA 104:1254–1259, 2007.CrossRefGoogle Scholar
  56. 56.
    Yim, E. K., R. M. Reano, S. W. Pang, A. F. Yee, C. S. Chen, and K. W. Leong. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials 26:5405–5413, 2005.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  1. 1.Department of Molecular Pharmacology, Physiology, and Biotechnology and Center for Biomedical EngineeringBrown UniversityProvidenceUSA

Personalised recommendations