Advertisement

Cellular and Molecular Bioengineering

, Volume 2, Issue 1, pp 75–86 | Cite as

Molecular Dynamics Simulated Unfolding of von Willebrand Factor A Domains by Force

  • Wei Chen
  • Jizhong Lou
  • Cheng ZhuEmail author
Article

Abstract

The three tandem A domains (A1, A2, and A3) of von Willebrand factor (VWF) play critical roles for its functions. The A1 and A3 domains contain respective binding sites for platelet glycoprotein Ib (GPIb) and collagen. The A2 domain hosts a proteolytic site for the VWF-cleavage enzyme A Disintegrin And Metalloprotease with a ThromboSpondin type 1 motifs 13 (ADAMTS-13). Previous studies suggested that shear flow assists the ADAMTS-13 cleavage of VWF by unfolding the A2 domain and thus exposing the cryptic proteolytic site. Here we used steered molecular dynamics (SMD) to simulate the unfolding of the A1 and A2 domains by tensile force. The forced unfolding of A2 started from the C-terminus because of its specific topology. The β-strands of A2 were pulled out sequentially, generating sawtooth-like peaks in the force-extension curves. The disulfide bond between A1 N- and C-termini prevented it from unfolding. After eliminating the disulfide bond, A1 was unfolded similarly as A2 in terms of the β-strand pullouts, but differed in the unfolding of helices. The major resistance of A1 and A2 to unfolding came from the hydrogen bond networks of the central β-sheets. Two different unfolding pathways of the β-strands were observed, where the sliding pathway encountered much higher energy barrier than the unzipping pathway.

Keywords

Molecular dynamics Protein unfolding Tensile force von Willebrand factor A domains 

Notes

Acknowledgments

We thank Dr. Stephen Harvey for kindly providing computational resources for the MD simulations. We are also grateful for supercomputer time provided by TeraGrid via NCSA DAC grant MCB080011N and LRAC grant MCA08X014. This work is supported by NIH grant HL091020 (C.Z.) and a Scientist Development Grant from American Heart Association (J.L.).

Supplementary material

12195_2009_51_MOESM1_ESM.avi (13.7 mb)
Video 1 A2 was pulled at the C-terminal Cα atom while the N-terminal Cα atom was fixed. α-helices are shown as coiled ribbons, β-strands as ribbons with arrows, and loops as tubes. A blue and a red sphere indicate, respectively, the N- and C-terminal Cα atoms. The backbone atoms of Tyr1605 and Met1606 adjacent to the proteolytic site are shown as green spheres. (AVI 13994 kb)
12195_2009_51_MOESM2_ESM.avi (16.7 mb)
Video 2 A2 was pulled at the N-terminal Cα atom while the C-terminal Cα atom was fixed. To facilitate comparison with Video 1, A2 in each frame has been translated such that the N-terminal Cα atom stays at its starting position to allow the structured portion of A2 to remain in view. The representations of A2 are the same as in Video 1. (AVI 17066 kb)
Video 3

A1 with an intact disulfide bond was pulled at the C-terminal Cα atom while the N-terminal Cα atom was fixed. α-helices are shown as coiled ribbons, β-strands as ribbons with arrows, and loops as tubes. A blue and a red sphere indicate, respectively, the N- and C-terminal Cα atoms. The disulfide bond atoms are shown as bonds. (AVI 2814 kb)

12195_2009_51_MOESM4_ESM.avi (13.4 mb)
Video 4 A1 with a broken disulfide bond was pulled at the C-terminal Cα atom while the N-terminal Cα atom was fixed. The representations of A1 are the same as in Video 3. (AVI 13738 kb)

References

  1. 1.
    Arya, M., B. Anvari, G.M. Romo, M.A. Cruz, J.F. Dong, L.V. McIntire, J.L. Moake, and J.A. Lopez. Ultralarge multimers of von Willebrand factor form spontaneous high-strength bonds with the platelet glycoprotein Ib-IX complex: studies using optical tweezers. Blood. 99(11): 3971–3977, 2002.CrossRefGoogle Scholar
  2. 2.
    Auton, M., M.A. Cruz, and J. Moake. Conformational stability and domain unfolding of the von Willebrand factor A domains. J Mol Biol. 366(3): 986–1000, 2007.CrossRefGoogle Scholar
  3. 3.
    Bienkowska, J., M. Cruz, A. Atiemo, R. Handin, and R. Liddington. The von Willebrand factor A3 domain does not contain a metal ion-dependent adhesion site motif. J Biol Chem. 272(40): 25162–25167, 1997.CrossRefGoogle Scholar
  4. 4.
    Bond, C.S. TopDraw: a sketchpad for protein structure topology cartoons. Bioinformatics. 19(2): 311–312, 2003.CrossRefGoogle Scholar
  5. 5.
    Brahms, S. and J. Brahms. Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. J Mol Biol. 138(2): 149–178, 1980.CrossRefGoogle Scholar
  6. 6.
    Carl, P., C.H. Kwok, G. Manderson, D.W. Speicher, and D.E. Discher. Forced unfolding modulated by disulfide bonds in the Ig domains of a cell adhesion molecule. Proc Natl Acad Sci U S A. 98(4): 1565–1570, 2001.CrossRefGoogle Scholar
  7. 7.
    Case, D.A., T. A. Darden, T. E. Cheatham, III, C. L. Simmerling, J. Wang, R. E. Duke, R. Luo, K. M. Merz, B. Wang, D. A. Pearlman, M. Crowley, S. Brozell, V. Tsui, H. Gohlke, J. Mongan, V. Hornak, G. Cui, P. Beroza, C. Schafmeister, J. W. Caldwell, W. S. Ross, and P. A. Kollman. AMBER 8. University of California, San Francisco, 2004.Google Scholar
  8. 8.
    Castaman, G., A.B. Federici, F. Rodeghiero, and P.M. Mannucci. von Willebrand’s disease in the year 2003: towards the complete identification of gene defects for correct diagnosis and treatment. Haematologica. 88(1): 94–108, 2003.Google Scholar
  9. 9.
    Dent, J.A., S.D. Berkowitz, J. Ware, C.K. Kasper, and Z.M. Ruggeri. Identification of a cleavage site directing the immunochemical detection of molecular abnormalities in type IIA von Willebrand factor. Proc Natl Acad Sci U S A. 87(16): 6306–6310, 1990.CrossRefGoogle Scholar
  10. 10.
    Dong, J.F., J.L. Moake, L. Nolasco, A. Bernardo, W. Arceneaux, C.N. Shrimpton, A.J. Schade, L.V. McIntire, K. Fujikawa, and J.A. Lopez. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood. 100(12): 4033–4039, 2002.CrossRefGoogle Scholar
  11. 11.
    Duan, Y., C. Wu, S. Chowdhury, M.C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, and P. Kollman. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem. 24(16): 1999–2012, 2003.CrossRefGoogle Scholar
  12. 12.
    Emsley, J., M. Cruz, R. Handin, and R. Liddington. Crystal structure of the von Willebrand factor A1 domain and implications for the binding of platelet glycoprotein Ib. J Biol Chem. 273(17): 10396–10401, 1998.CrossRefGoogle Scholar
  13. 13.
    Franchini, M. and G. Lippi. von Willebrand factor and thrombosis. Ann Hematol. 85(7): 415–423, 2006.CrossRefGoogle Scholar
  14. 14.
    Frishman, D. and P. Argos. Knowledge-based protein secondary structure assignment. Proteins. 23(4): 566–579, 1995.CrossRefGoogle Scholar
  15. 15.
    Gerhardt, S., G. Hassall, P. Hawtin, E. McCall, L. Flavell, C. Minshull, D. Hargreaves, A. Ting, R.A. Pauptit, A.E. Parker, and W.M. Abbott. Crystal structures of human ADAMTS-1 reveal a conserved catalytic domain and a disintegrin-like domain with a fold homologous to cysteine-rich domains. J Mol Biol. 373(4): 891–902, 2007.CrossRefGoogle Scholar
  16. 16.
    Huizinga, E.G., R. Martijn van der Plas, J. Kroon, J.J. Sixma, and P. Gros. Crystal structure of the A3 domain of human von Willebrand factor: implications for collagen binding. Structure. 5(9): 1147–1156, 1997.CrossRefGoogle Scholar
  17. 17.
    Huizinga, E.G., S. Tsuji, R.A. Romijn, M.E. Schiphorst, P.G. de Groot, J.J. Sixma, and P. Gros. Structures of glycoprotein Ibalpha and its complex with von Willebrand factor A1 domain. Science. 297(5584): 1176–1179, 2002.CrossRefGoogle Scholar
  18. 18.
    Humphrey, W., A. Dalke, and K. Schulten. VMD: visual molecular dynamics. J. Mol. Graph. 14(1): 33–38, 27–38, 1996.Google Scholar
  19. 19.
    Lee, J.O., P. Rieu, M.A. Arnaout, and R. Liddington. Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell. 80(4): 631–638, 1995.CrossRefGoogle Scholar
  20. 20.
    Levy, G.G., W.C. Nichols, E.C. Lian, T. Foroud, J.N. McClintick, B.M. McGee, A.Y. Yang, D.R. Siemieniak, K.R. Stark, R. Gruppo, R. Sarode, S.B. Shurin, V. Chandrasekaran, S.P. Stabler, H. Sabio, E.E. Bouhassira, J.D. Upshaw, Jr., D. Ginsburg, and H.M. Tsai. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature. 413(6855): 488–494, 2001.CrossRefGoogle Scholar
  21. 21.
    Matsushita, T. and J.E. Sadler. Identification of amino acid residues essential for von Willebrand factor binding to platelet glycoprotein Ib. Charged-to-alanine scanning mutagenesis of the A1 domain of human von Willebrand factor. J Biol Chem. 270(22): 13406–13414, 1995.CrossRefGoogle Scholar
  22. 22.
    Mazzucato, M., P. Spessotto, A. Masotti, L. De Appollonia, M.R. Cozzi, A. Yoshioka, R. Perris, A. Colombatti, and L. De Marco. Identification of domains responsible for von Willebrand factor type VI collagen interaction mediating platelet adhesion under high flow. J Biol Chem. 274(5): 3033–3041, 1999.CrossRefGoogle Scholar
  23. 23.
    Michiels, J.J., A. Gadisseur, U. Budde, Z. Berneman, M. van der Planken, W. Schroyens, A. van de Velde, and H. van Vliet. Characterization, classification, and treatment of von Willebrand diseases: a critical appraisal of the literature and personal experiences. Semin Thromb Hemost. 31(5): 577–601, 2005.CrossRefGoogle Scholar
  24. 24.
    Mosyak, L., K. Georgiadis, T. Shane, K. Svenson, T. Hebert, T. McDonagh, S. Mackie, S. Olland, L. Lin, X. Zhong, R. Kriz, E.L. Reifenberg, L.A. Collins-Racie, C. Corcoran, B. Freeman, R. Zollner, T. Marvell, M. Vera, P.E. Sum, E.R. Lavallie, M. Stahl, and W. Somers. Crystal structures of the two major aggrecan degrading enzymes, ADAMTS4 and ADAMTS5. Protein Sci. 17(1): 16–21, 2008.CrossRefGoogle Scholar
  25. 25.
    Padilla, A., J.L. Moake, A. Bernardo, C. Ball, Y. Wang, M. Arya, L. Nolasco, N. Turner, M.C. Berndt, B. Anvari, J.A. Lopez, and J.F. Dong. P-selectin anchors newly released ultralarge von Willebrand factor multimers to the endothelial cell surface. Blood. 103(6): 2150–2156, 2004.CrossRefGoogle Scholar
  26. 26.
    Phillips, J.C., R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, and K. Schulten. Scalable molecular dynamics with NAMD. J Comput Chem. 26(16): 1781–1802, 2005.CrossRefGoogle Scholar
  27. 27.
    Qu, A. and D.J. Leahy. Crystal structure of the I-domain from the CD11a/CD18 (LFA-1, alpha L beta 2) integrin. Proc Natl Acad Sci U S A. 92(22): 10277–10281, 1995.CrossRefGoogle Scholar
  28. 28.
    Romijn, R.A., B. Bouma, W. Wuyster, P. Gros, J. Kroon, J.J. Sixma, and E.G. Huizinga. Identification of the collagen-binding site of the von Willebrand factor A3-domain. J Biol Chem. 276(13): 9985–9991, 2001.CrossRefGoogle Scholar
  29. 29.
    Sadler, J.E. von Willebrand factor: two sides of a coin. J Thromb Haemost. 3(8): 1702–1709, 2005.CrossRefGoogle Scholar
  30. 30.
    Shieh, H.S., K.J. Mathis, J.M. Williams, R.L. Hills, J.F. Wiese, T.E. Benson, J.R. Kiefer, M.H. Marino, J.N. Carroll, J.W. Leone, A.M. Malfait, E.C. Arner, M.D. Tortorella, and A. Tomasselli. High resolution crystal structure of the catalytic domain of ADAMTS-5 (aggrecanase-2). J Biol Chem. 283(3): 1501–1507, 2008.CrossRefGoogle Scholar
  31. 31.
    Sutherland, J.J., L.A. O’Brien, D. Lillicrap, and D.F. Weaver. Molecular modeling of the von Willebrand factor A2 Domain and the effects of associated type 2A von Willebrand disease mutations. J Mol Model. 10(4): 259–270, 2004.CrossRefGoogle Scholar
  32. 32.
    Tsai, H.M. Deficiency of ADAMTS13 and thrombotic thrombocytopenic purpura. Blood. 100(10): 3839–3840; author reply 3840–3832, 2002.CrossRefGoogle Scholar
  33. 33.
    Tsai, H.M., Sussman, II, and R.L. Nagel. Shear stress enhances the proteolysis of von Willebrand factor in normal plasma. Blood. 83(8): 2171–2179, 1994.Google Scholar
  34. 34.
    Wiita, A.P., S.R. Ainavarapu, H.H. Huang, and J.M. Fernandez. Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc Natl Acad Sci U S A. 103(19): 7222–7227, 2006.CrossRefGoogle Scholar
  35. 35.
    Wiita, A.P., R. Perez-Jimenez, K.A. Walther, F. Grater, B.J. Berne, A. Holmgren, J.M. Sanchez-Ruiz, and J.M. Fernandez. Probing the chemistry of thioredoxin catalysis with force. Nature. 450(7166): 124–127, 2007.CrossRefGoogle Scholar
  36. 36.
    Yago, T., J. Lou, T. Wu, J. Yang, J.J. Miner, L. Coburn, J.A. Lopez, M.A. Cruz, J.F. Dong, L.V. McIntire, R.P. McEver, and C. Zhu. Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. J Clin Invest. 118(9): 3195–3207, 2008.Google Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  1. 1.George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Institute for Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUSA
  3. 3.Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations