Cellular and Molecular Bioengineering

, Volume 2, Issue 1, pp 156–165 | Cite as

Incorporation of Photosynthetic Reaction Centers in the Membrane of Human Cells: Toward a New Tool for Optical Control of Cell Activity

  • Cristian Pablo Pennisi
  • Poul Erik Jensen
  • Vladimir Zachar
  • Elias Greenbaum
  • Ken Yoshida
Article

Abstract

The Photosystem I (PSI) reaction center is a photosynthetic membrane complex in which light-induced charge separation is accompanied by the generation of an electric potential. It has been recently proposed as a means to confer light sensitivity to cells possessing voltage-activated ion channels, but the feasibility of heterologous incorporation has not been demonstrated. In this work, methods of delivery and detection of PSI in the membrane of human cells are presented. Purified fractions of PSI were reconstituted in proteoliposomes that were used as vehicles for the membrane incorporation. A fluorescent impermeable dye was entrapped in the vesicles to qualitatively analyze the nature of the vesicle–cell interaction. After incorporation, the localization and orientation of the complexes in the membrane was studied using immuno-fluorescence microscopy. The results showed complexes oriented as in native membranes, which were randomly distributed in clusters over the entire surface of the cell. Additionally, analysis of cell viability showed that the incorporation process does not damage the cell membrane. Taken together, the results of this work suggest that the mammalian cellular membrane is a reasonable environment for the incorporation of PSI complexes, which opens the possibility of using these molecular photovoltaic structures for optical control of cell activity.

Keywords

Photosystem I Proteoliposomes Immunofluorescence microscopy Heterologous incorporation Adipose stem cells 

References

  1. 1.
    Abdel-Ghany S. E., P. Muller-Moule, K. K. Niyogi, M. Pilon, T. Shikanai 2005 Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Cell 17:1233–1251CrossRefGoogle Scholar
  2. 2.
    Andersen B., B. Koch, H. V. Scheller 1992 Structural and functional analysis of the reducing side of Photosystem I. Physiol. Plant. 84:154–161CrossRefGoogle Scholar
  3. 3.
    Aravanis A. M., L. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, K. Deisseroth 2007 An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4:S143–S156CrossRefGoogle Scholar
  4. 4.
    Banghart M., K. Borges, E. Isacoff, D. Trauner, R. H. Kramer 2004 Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7:1381–1386CrossRefGoogle Scholar
  5. 5.
    Bi A. D., J. J. Cui, Y. P. Ma, E. Olshevskaya, M. L. Pu, A. M. Dizhoor, Z. H. Pan 2006 Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50:23–33CrossRefGoogle Scholar
  6. 6.
    Chu C. J., J. Dijkstra, M. Z. Lai, K. Hong, F. C. Szoka 1990 Efficiency of cytoplasmic delivery by pH-sensitive liposomes to cells in culture. Pharm. Res. 7:824–834CrossRefGoogle Scholar
  7. 7.
    Daleke D. L., K. Hong, D. Papahadjopoulos 1990 Endocytosis of liposomes by macrophages: binding, acidification and leakage of liposomes monitored by a new fluorescence assay. Biochim. Biophys. Acta Biomembr. 1024:352–366CrossRefGoogle Scholar
  8. 8.
    Düzgünes, N., L. A. Bagatolli, P. Meers, Y. Oh, and R. M. Straubinger. Fluorescence methods in liposome research. In: Liposomes—A Practical Approach, edited by V. P. Torchilin and V. Weissig. Oxford: Oxford University Press, 2003, pp. 149–166Google Scholar
  9. 9.
    Eriksson H., B. Baldetorp, B. Mattiasson, H. O. Sjogren 1985 A sensitive method to introduce membrane-bound proteins into recipient cells based on affinity enrichment of lipid vesicles to the recipient cell prior to fusion. Biochim. Biophys. Acta 815:417–425CrossRefGoogle Scholar
  10. 10.
    Eytan G. D., E. Eytan 1980 Fusion of proteoliposomes and cells. ATP-dependent Ca2+ uptake into erythrocytes catalyzed by Ca2+-ATPase from skeletal muscle. J. Biol. Chem. 255:4992–4995Google Scholar
  11. 11.
    Gad A. E., R. Broza, G. D. Eytan 1979 Fusion of cells and proteoliposomes: Incorporation of beef heart cytochrome oxidase into rabbit erythrocytes. FEBS Lett. 102:230–234CrossRefGoogle Scholar
  12. 12.
    Giszter S. F., J. T. Scabich, G. Ellis-Davies, K. J. Simansky, M. A. Lemay 2002 Photolytic uncaging of neurotransmitters as a control and stimulation device for neural tissues. Proc. Annu. Int. Conf. IEEE EMBS 3:2072–2073Google Scholar
  13. 13.
    Greenbaum E., M. Humayun, T. Kuritz, J. W. Lee, C. A. Sanders, B. Bruce, J. Millsaps, I. Lee 2001 Application of photosynthesis to artificial sight. Proc. Annu. Int. Conf. IEEE EMBS 4:4089–4091Google Scholar
  14. 14.
    Haldrup A., H. Naver, H. V. Scheller 1999 The interaction between plastocyanin and Photosystem I is inefficient in transgenic Arabidopsis plants lacking the PSI-N subunit of Photosystem I. Plant J. 17:689–698CrossRefGoogle Scholar
  15. 15.
    Heubach J. F., E. M. Graf, J. Leutheuser, M. Bock, B. Balana, I. Zahanich, T. Christ, S. Boxberger, E. Wettwer, U. Ravens 2004 Electrophysiological properties of human mesenchymal stem cells. J. Physiol. 554:659–672CrossRefGoogle Scholar
  16. 16.
    Jensen P. E., M. Gilpin, J. Knoetzel, H. V. Scheller 2000 The PSI-K subunit of Photosystem I is involved in the interaction between light-harvesting complex I and the Photosystem I reaction center core. J. Biol. Chem. 275:24701–24708CrossRefGoogle Scholar
  17. 17.
    Krause G. H., E. Weis 1984 Chlorophyll fluorescence as a tool in plant physiology—II. Interpretation of fluorescence signals. Photosynth. Res. 5:139–157CrossRefGoogle Scholar
  18. 18.
    Kuritz T., I. Lee, E. T. Owens, M. Humayun, E. Greenbaum 2005 Molecular photovoltaics and the photoactivation of mammalian cells. IEEE Trans. Nanobiosci. 4:196–200CrossRefGoogle Scholar
  19. 19.
    Leibl W., B. Toupance, J. Breton 1995 Photoelectric characterization of forward electron transfer to iron-sulfur centers in Photosystem I. Biochemistry 34:10237–10244CrossRefGoogle Scholar
  20. 20.
    Lentz B. R. 1994 Polymer-induced membrane fusion: Potential mechanism and relation to cell fusion events. Chem. Phys. Lipid 73:91–106CrossRefGoogle Scholar
  21. 21.
    Li G., H. Sun, X. Deng, C. Lau 2005 Characterization of ionic currents in human mesenchymal stem cells from bone marrow. Stem Cells 23:371–382CrossRefGoogle Scholar
  22. 22.
    Li X., D. V. Gutierrez, M. G. Hanson, J. Han, M. D. Mark, H. Chiel, P. Hegemann, L. T. Landmesser, S. Herlitze 2005 Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl. Acad. Sci. USA 102:17816–17821CrossRefGoogle Scholar
  23. 23.
    Melyan Z., E. E. Tarttelin, J. Bellingham, R. J. Lucas, M. W. Hankins 2005 Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433:741–745CrossRefGoogle Scholar
  24. 24.
    Miesenbök G., I. G. Kevrekidis 2005 Optical imaging and control of genetically designated neurons in functioning circuits. Annu. Rev. Neurosci. 28:533–563CrossRefGoogle Scholar
  25. 25.
    Mustardy L., F. X. Cunningham Jr., E. Gantt 1992 Photosynthetic membrane topography: quantitative in situ localization of Photosystems I and II. Proc. Natl. Acad. Sci. USA 89:10021–10025CrossRefGoogle Scholar
  26. 26.
    Nagel G., T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, E. Bamberg 2003 Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100:13940–13945CrossRefGoogle Scholar
  27. 27.
    Nerbonne J. M. 1996 Caged compounds: tools for illuminating neuronal responses and connections. Curr. Opin. Neurobiol. 6:379–386CrossRefGoogle Scholar
  28. 28.
    Orlich G., G. Hauska 1980 Reconstitution of photosynthetic energy-conservation. 1. Proton movements in liposomes containing reaction center of Photosystem-I from spinach-chloroplasts. Eur. J. Biochem. 111:525–533CrossRefGoogle Scholar
  29. 29.
    Pennisi C. P., E. Greenbaum, K. Yoshida 2008 Spatial distribution of the electric potential from Photosystem I reaction centers in lipid vesicles. IEEE Trans. Nanobiosci. 7:164–171CrossRefGoogle Scholar
  30. 30.
    Pfündel E., B. Neubohn 1999 Assessing Photosystem I and II distribution in leaves from C4 plants using confocal laser scanning microscopy. Plant Cell Environ. 22:1569–1577CrossRefGoogle Scholar
  31. 31.
    Pilgaard L., P. Lund, J. G. Rasmussen, T. Fink, V. Zachar 2008 Comparative analysis of highly defined proteases for the isolation of adipose tissue-derived stem cells. Regenerat. Med. 3:705–715CrossRefGoogle Scholar
  32. 32.
    Raffy S., C. Lazdunski, J. Teissié 2004 Electroinsertion and activation of the C-terminal domain of Colicin A, a voltage gated bacterial toxin, into mammalian cell membranes. Mol. Membr. Biol. 21:237–246CrossRefGoogle Scholar
  33. 33.
    Sakamoto W., A. Zaltsman, Z. Adam, Y. Takahashi 2003 Coordinated regulation and complex formation of yellow variegated1 and yellow variegated2, chloroplastic FTSH metalloproteases involved in the repair cycle of Photosystem II in Arabidopsis thylakoid membranes. Plant Cell 15:2843–2855CrossRefGoogle Scholar
  34. 34.
    Sieber J. J., K. I. Willig, C. Kutzner, C. Gerding-Reimers, B. Harke, G. Donnert, B. Rammner, C. Eggeling, S. W. Hell, H. Grubmuller, T. Lang 2007 Anatomy and dynamics of a supramolecular membrane protein cluster. Science 317:1072–1076CrossRefGoogle Scholar
  35. 35.
    Straubinger R. M. 1990 Endocytosis and intracellular fate of liposomes using pyranine as a probe. Biochemistry 29:4929–4939CrossRefGoogle Scholar
  36. 36.
    Szoka F., K. Jacobson, Z. Derzko, D. Papahadjopoulos 1980 Fluorescence studies on the mechanism of liposome–cell interactions in vitro. Biochim. Biophys. Acta 600:1–18CrossRefGoogle Scholar
  37. 37.
    Torchilin V. P. 2005 Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4:145–160CrossRefGoogle Scholar
  38. 38.
    Tsiotis G., W. Haase, A. Engel, H. Michel 1995 Isolation and structural characterization of trimeric cyanobacterial Photosystem I complex with the help of recombinant antibody fragments. Eur. J. Biochem. 231:823–830CrossRefGoogle Scholar
  39. 39.
    Volgraf M., P. Gorostiza, R. Numano, R. H. Kramer, E. Y. Isacoff, D. Trauner 2006 Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat. Chem. Biol. 2:47–52CrossRefGoogle Scholar
  40. 40.
    Zemelman B. V., N. Nesnas, G. A. Lee, G. Miesenböck 2003 Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proc. Natl. Acad. Sci. USA 100:1352–1357CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2008

Authors and Affiliations

  • Cristian Pablo Pennisi
    • 1
  • Poul Erik Jensen
    • 2
  • Vladimir Zachar
    • 3
  • Elias Greenbaum
    • 4
  • Ken Yoshida
    • 1
    • 5
  1. 1.Center for Sensory-Motor Interaction (SMI), Department of Health Science and TechnologyAalborg UniversityAalborgDenmark
  2. 2.VKR Research Center “Pro-Active Plants”, Molecular Plant Biology Laboratory, Department of Plant Biology and BiotechnologyUniversity of CopenhagenFrederiksberg CDenmark
  3. 3.Laboratory for Stem Cell Research, Department of Health Science and TechnologyAalborg UniversityAalborgDenmark
  4. 4.Chemical Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  5. 5.Biomedical Engineering DepartmentIndiana University–Purdue University IndianapolisIndianapolisUSA

Personalised recommendations