Advertisement

Cellular and Molecular Bioengineering

, Volume 1, Issue 4, pp 312–326 | Cite as

From Single Molecules to Living Cells: Nanomechanical Measurements of Cell Adhesion

  • Deborah LeckbandEmail author
Molecular Interactions

Abstract

This review highlights complementary force probe techniques and illustrates how these approaches provide different, but complementary insight into molecular mechanisms of cell adhesion. As a model system, we focus on classical cadherins, which mediate cell–cell adhesion in all solid tissues. The experimental approaches described probe cadherin binding from single molecules to cells, and quantify the kinetics, energetics, and mechanical strengths of cadherin-mediated adhesive contacts. The cumulative findings of these complementary studies reveal complexities of the cadherin binding mechanism, and quantify relevant bond parameters. Importantly these different approaches demonstrate how the strengths and kinetics of cadherin bonds at the single molecule level govern the initial dynamics of adhesion between living cells. The findings also exemplify the capacity of these different force probe techniques to identify novel properties of molecular interactions governing biological adhesion.

Keywords

Cadherin Cell adhesion Single bond rupture Surface force apparatus Micropipette manipulation Biphasic kinetics Molecular mechanics 

Notes

Acknowledgment

This work was supported by 2RO1 NIH GM51338.

Supplementary material

(PDF 17,826 kb)

References

  1. 1.
    Al-Amoudi A., D. C. Diez, M. J. Betts, A. S. Frangakis 2007 The molecular architecture of cadherins in native epidermal desmosomes. Nature 450:832–837CrossRefGoogle Scholar
  2. 2.
    Bayas M. V., A. Kearney, A. Avramovic, P. A. van der Merwe, D. E. Leckband 2007 Impact of salt bridges on the equilibrium binding and adhesion of human CD2 and CD58. J. Biol. Chem. 282:5589–5596CrossRefGoogle Scholar
  3. 3.
    Bayas M. V., A. Leung, E. Evans, D. Leckband 2006 Lifetime measurements reveal kinetic differences between homophilic cadherin bonds. Biophys. J. 90:1385–1395CrossRefGoogle Scholar
  4. 4.
    Boggon T. J., J. Murray, S. Chappuis-Flament, E. Wong, B. M. Gumbiner, L. Shapiro 2002 C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296:1308–1313CrossRefGoogle Scholar
  5. 5.
    Born M., Wolf, E. 1980 Principles of Optics. Oxford: PergamonGoogle Scholar
  6. 6.
    Chang K. C., D. F. Tees, D. A. Hammer 2000 The state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion. Proc. Natl. Acad. Sci. USA 97:11262–11267CrossRefGoogle Scholar
  7. 7.
    Chappuis-Flament S., E. Wong, L. D. Hicks, C. M. Kay, B. M. Gumbiner 2001 Multiple cadherin extracellular repeats mediate homophilic binding and adhesion. J. Cell Biol. 154:231–243CrossRefGoogle Scholar
  8. 8.
    Chesla S. E., P. Li, S. Nagarajan, P. Selvaraj, C. Zhu 2000 The membrane anchor influences ligand binding two-dimensional kinetic rates and three-dimensional affinity of fcgammariii (cd16). J. Biol. Chem. 275:10235–10246CrossRefGoogle Scholar
  9. 9.
    Chesla S. E., P. Selvaraj, C. Zhu 1998 Measuring two-dimensional receptor-ligand binding kinetics by micropipette. Biophys. J. 75:1553–1572Google Scholar
  10. 10.
    Chien Y.-H., N. Jiang, F. Li, F. Zhang, C. Zhu, D. Leckband (2008) Two-stage cadherin kinetics require multiple extracellular domains but not the cytoplasmic region. J. Biol. Chem. 283:1848–1856CrossRefGoogle Scholar
  11. 11.
    Evans E., D. Berk, A. Leung 1991 Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments. Biophys. J. 59:838–848Google Scholar
  12. 12.
    Evans E., K. Ritchie 1997 Dynamic strength of molecular adhesion bonds. Biophys. J. 72:1541–1555Google Scholar
  13. 13.
    Evans E., K. Ritchie, R. Merkel 1995 Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys. J. 68:2580–2587Google Scholar
  14. 14.
    Fernandez J. M., H. Li 2004 Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303:1674–1678CrossRefGoogle Scholar
  15. 15.
    Guilford P., Hopkins J., Harraway J., McLeod M., Harawira P., Taite H., Scoular R., Miller A., Reeve AE (1998). E-cadherin germline mutations in familial gastric cancer. Nature 392:402–405CrossRefGoogle Scholar
  16. 16.
    Gumbiner B. M. 2005 Regulation of cadherin-mediated adhesion in morphogenesis. Nat. Rev. Mol. Cell Biol. 6:622–634CrossRefGoogle Scholar
  17. 17.
    Handschuh G., Candidusand S., Luber B., Reich U., Schott C., Oswald S. 1999 Tumor associated e-cadherin mutations alter cellular morphology, decrease cellular adhesion, and increase cellular motility. Oncogene 18:4301–4312CrossRefGoogle Scholar
  18. 18.
    He W., Cowin, P., Stokes, D.L. 2003 Untangling desmosomal knots with electron tomography. Science 302:109–113CrossRefGoogle Scholar
  19. 19.
    Helm C. A., J. N. Israelachvili, P. M. McGuiggan 1989 Molecular mechanisms and forces involved in the adhesion and fusion of amphiphilic bilayers. Science 246:919–922CrossRefGoogle Scholar
  20. 20.
    Huang J., J. Chen, S. E. Chesla, T. Yago, P. Mehta, R. P. McEver, C. Zhu, M. Long 2004 Quantifying the effects of molecular orientation and length on two-dimensional receptor-ligand binding kinetics. J. Biol. Chem. 279:44915–44923CrossRefGoogle Scholar
  21. 21.
    Hukkanen E. J., J. A. Wieland, A. Gewirth, D. E. Leckband, R. D. Braatz 2005 Multiple-bond kinetics from single-molecule pulling experiments: evidence for multiple ncam bonds. Biophys. J. 89:3434–3445CrossRefGoogle Scholar
  22. 22.
    Hunter R. 1989 Foundations of Colloid Science. Oxford: Oxford University PressGoogle Scholar
  23. 23.
    Israelachvili J. 1973 Thin film studies using multiple-beam interferomtry. J. Colloid Interface Sci. 44:259–272CrossRefGoogle Scholar
  24. 24.
    Israelachvili J. N. (1987) Solvation forces and liquid structure, as probed by direct force measurements. Acc. Chem. Res. 20:415–421CrossRefGoogle Scholar
  25. 25.
    Israelachvili J. 1992 Intermolecular and Surface Forces. New York: Academic PressGoogle Scholar
  26. 26.
    Israelachvili J. N., Adams, G. E. 1978 Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm. J. Chem. Soc. Faraday Trans. I. 75:975–1001CrossRefGoogle Scholar
  27. 27.
    Israelachvili J., McGuiggan, P. 1990 Adhesion and short-range forces between surfaces: new apparatus for surface force measurements. J. Mater. Res. 5:2223–2231CrossRefGoogle Scholar
  28. 28.
    Israelachvili J. N., Pashley, R. M. 1983 Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature. 306:249–250CrossRefGoogle Scholar
  29. 29.
    Izrailev S., S. Stepaniants, M. Balsera, Y. Oono, K. Schulten 1997 Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys. J. 72:1568–1581Google Scholar
  30. 30.
    Jeppesen C., J. Y. Wong, T. L. Kuhl, J. N. Israelachvili, N. Mullah, S. Zalipsky, C. M. Marques 2001 Impact of polymer tether length on multiple ligand-receptor bond formation. Science. 293:465–468CrossRefGoogle Scholar
  31. 31.
    Johnson C. P., I. Fujimoto, U. Rutishauser, D. E. Leckband 2005 Direct evidence that neural cell adhesion molecule (ncam) polysialylation increases intermembrane repulsion and abrogates adhesion. J. Biol. Chem. 280:137–145Google Scholar
  32. 32.
    Johnson K. L., Kendall, K., Roberts, A. D. 1971 Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324:301–313CrossRefGoogle Scholar
  33. 33.
    Lauffenburger D. A., A. F. Horwitz 1996 Cell migration: a physically integrated molecular process. Cell 84:359–369CrossRefGoogle Scholar
  34. 34.
    Leckband D., J. Israelachvili 2001 Intermolecular forces in biology. Q. Rev. Biophys. 34:105–267CrossRefGoogle Scholar
  35. 35.
    Leckband D. E., Kuhl, T. L., Wang, H. K., Müller, W., Ringsdorf, H. 1995. 4–4–20 anti-fluorescyl igg fab’ recognition of membrane bound hapten: direct evidence for the role of protein and interfacial structure. Biochemistry 34:11467–11478CrossRefGoogle Scholar
  36. 36.
    Leckband D., Müller, W., Schmitt, F.-J., Ringsdorf, H. 1995 Molecular mechanisms determining the strength of receptor-mediated intermembrane adhesion. Biophys. J. 69:1162–1169Google Scholar
  37. 37.
    Leckband D., Schmitt, F.-J., Israelachvili, J., Knoll, W. 1994 Direct force measurements of specific and nonspecific protein interactions. Biochemistry 33:4611–4624CrossRefGoogle Scholar
  38. 38.
    Li F., F. Pincet, E. Perez, W. S. Eng, T. J. Melia, J. E. Rothman, D. Tareste 2007 Energetics and dynamics of snarepin folding across lipid bilayers. Nat. Struct. Mol. Biol. 14:890–896CrossRefGoogle Scholar
  39. 39.
    Long M., H. Zhao, K. S. Huang, C. Zhu 2001 Kinetic measurements of cell surface e-selectin/carbohydrate ligand interactions. Ann. Biomed. Eng. 29:935–946CrossRefGoogle Scholar
  40. 40.
    Marshall B. T., K. K. Sarangapani, J. Lou, R. P. McEver, C. Zhu 2005 Force history dependence of receptor-ligand dissociation. Biophys. J. 88:1458–1466CrossRefGoogle Scholar
  41. 41.
    Mohandas N., E. Evans 1984 Adherence of sickle erythrocytes to vascular endothelial cells: requirement for both cell membrane changes and plasma factors. Blood 64:282–287Google Scholar
  42. 42.
    Perret E., A. Leung, H. Feracci, E. Evans 2004 Trans-bonded pairs of e-cadherin exhibit a remarkable hierarchy of mechanical strengths. Proc. Natl. Acad. Sci USA 101:16472–16477CrossRefGoogle Scholar
  43. 43.
    Pokutta S., K. Herrenknecht, R. Kemler, J. Engel 1994 Conformational changes of the recombinant extracellular domain of e-cadherin upon calcium binding. Eur. J. Biochem. 223: 1019–1026CrossRefGoogle Scholar
  44. 44.
    Prakasam A. K., V. Maruthamuthu, D. E. Leckband 2006 Similarities between heterophilic and homophilic cadherin adhesion. Proc. Natl. Acad. Sci. USA 103:15434–15439CrossRefGoogle Scholar
  45. 45.
    Shi Q., Y. H. Chien, D. Leckband (2008) Biophysical properties of cadherin bonds do not predict cell sorting. J. Biol. Chem. 283:28454–28463CrossRefGoogle Scholar
  46. 46.
    Sivasankar S., B. Gumbiner, D. Leckband 2001 Direct measurements of multiple adhesive alignments and unbinding trajectories between cadherin extracellular domains. Biophys. J. 80:1758–1768Google Scholar
  47. 47.
    Sotomayor M., K. Schulten 2008 The allosteric role of the Ca2+ switch in adhesion and elasticity of c-cadherin. Biophys. J. 94:4621–4633CrossRefGoogle Scholar
  48. 48.
    Sulchek T. A., R. W. Friddle, K. Langry, E. Y. Lau, H. Albrecht, T. V. Ratto, S. J. DeNardo, M. E. Colvin, A. Noy 2005 Dynamic force spectroscopy of parallel individual mucin1-antibody bonds. Proc. Natl. Acad. Sci. USA 102:16638–16643CrossRefGoogle Scholar
  49. 49.
    Takeichi M. (1993) Cadherins in cancer: implications for invasion and metastasis. Curr. Opin. Cell Biol. 5:806–811CrossRefGoogle Scholar
  50. 50.
    Tolansky S. 1951 Applications of multiple-beam interferometry. Nature 167:815–816CrossRefGoogle Scholar
  51. 51.
    Tsukasaki Y., K. Kitamura, K. Shimizu, A. H. Iwane, Y. Takai, T. Yanagida 2007 Role of multiple bonds between the single cell adhesion molecules, nectin and cadherin, revealed by high sensitive force measurements. J. Mol. Biol. 367:996–1006CrossRefGoogle Scholar
  52. 52.
    Williams T. E., S. Nagarajan, P. Selvaraj, C. Zhu 2000 Concurrent and independent binding of fcgamma receptors iia and iiib to surface-bound igg. Biophys. J. 79:1867–1875Google Scholar
  53. 53.
    Williams T. E., S. Nagarajan, P. Selvaraj, C. Zhu 2001 Quantifying the impact of membrane microtopology on effective two-dimensional affinity. J. Biol. Chem. 276:13283–13288CrossRefGoogle Scholar
  54. 54.
    Williams T. E., P. Selvaraj, C. Zhu 2000 Concurrent binding to multiple ligands: kinetic rates of cd16b for membrane-bound igg1 and igg2. Biophys. J. 79:1858–1866Google Scholar
  55. 55.
    Wong J. Y., T. L. Kuhl, J. N. Israelachvili, N. Mullah, S. Zalipsky 1997 Direct measurement of a tethered ligand-receptor interaction potential. Science 275:820–822CrossRefGoogle Scholar
  56. 56.
    Yap A. S., W. M. Brieher, B. M. Gumbiner 1997 Molecular and functional analysis of cadherin-based adherens junctions. Annu. Rev. Cell Dev. Biol. 13:119–146CrossRefGoogle Scholar
  57. 57.
    Yeung C., Purves, T., Kloss, A. A., Kuhl, T. L., Sligar, S., Leckband, D. 1999 Cytochrome c recognition of immobilized, orientational variants of cytochrome b5: direct force and equilibrium binding measurements. Langmuir 15:6829–6836CrossRefGoogle Scholar
  58. 58.
    Zhang F., W. D. Marcus, N. H. Goyal, P. Selvaraj, T. A. Springer, C. Zhu 2005 Two-dimensional kinetics regulation of alphalbeta2-icam-1 interaction by conformational changes of the alphal-inserted domain. J. Biol. Chem. 280:42207–42218CrossRefGoogle Scholar
  59. 59.
    Zhu B., S. Chappuis-Flament, E. Wong, I. E. Jensen, B. M. Gumbiner, D. Leckband 2003 Functional analysis of the structural basis of homophilic cadherin adhesion. Biophys. J. 84: 4033–4042Google Scholar
  60. 60.
    Zhu B., E. A. Davies, P. A. van der Merwe, T. Calvert, D. E. Leckband 2002 Direct measurements of heterotypic adhesion between the cell surface proteins cd2 and cd48. Biochemistry 41:12163–12170CrossRefGoogle Scholar
  61. 61.
    Zhu C., M. Long, S. E. Chesla, P. Bongrand 2002 Measuring receptor/ligand interaction at the single-bond level: experimental and interpretative issues. Ann. Biomed. Eng. 30:305–314CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2008

Authors and Affiliations

  1. 1.Department of Chemistry, Department of Chemical and Biomolecular Engineering, Center for Biophysics and Computational BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations