Cellular and Molecular Bioengineering

, Volume 1, Issue 1, pp 84–92 | Cite as

Model for Protein Concentration Gradients in the Cytoplasm

Article

Abstract

Intracellular protein concentration gradients are generally thought to be unsustainable at steady-state due to diffusion. Here we show how protein concentration gradients can theoretically be sustained indefinitely through a relatively simple mechanism that couples diffusion to a spatially segregated kinase–phosphatase system. Although it is appreciated that such systems can theoretically give rise to phosphostate gradients, it has been assumed that they do not give rise to gradients in the total protein concentration. Here we show that this assumption does not hold if the two forms of protein have different diffusion coefficients. If, for example, the phosphorylated state binds selectively to a second larger protein or protein complex, then a steady-state gradient in total protein concentration will be created. We illustrate the principle with an analytical solution to the diffusion-reaction problem and by stochastic individual-based simulations using the Smoldyn program. We argue that protein gradients created in this way need to be considered in experiments using fluorescent probes and could in principle encode spatial information in the cytoplasm.

Keywords

Intracellular organization Diffusion Phophorylation states Mathematical analysis Brownian dynamics simulation Bacterial chemotaxis 

Abbreviations

A

CheA

Y

CheY

Yp, CheYp

Phosphorylated CheY

Z2

CheZ dimer

Notes

Acknowledgments

The authors acknowledge funding from National Science Foundation Career Award (BES 9984955), NIH-National Institute of General Medical Sciences (GM71522), McKnight Land-Grant Professorship to DJO, Royal Society University Research Fellowship to KL, and from NIH-NIGMS (GM64713) to Dennis Bray. We thank Dennis Bray for helpful discussions, and him and Matthew D. Levin for insightful comments on the manuscript.

References

  1. 1.
    Andrews S. S., D. Bray. Stochastic simulation of chemical reactions with spatial resolution and single molecule detail. Phys. Biol. 1:137–151, 2004CrossRefGoogle Scholar
  2. 2.
    Blat Y., M. Eisenbach. Phosphorylation-dependent binding of the chemotaxis signal molecule CheY to its phosphatase, CheZ. Biochemistry 33(4):902–906, 1994CrossRefGoogle Scholar
  3. 3.
    Brown G. C., B. N. Kholodenko. Spatial gradients of cellular phospho-proteins. FEBS Lett 457(3):452–454, 1999CrossRefGoogle Scholar
  4. 4.
    Cassimeris L. The oncoprotein 18/stathmin family of microtubule destabilizers. Curr. Opin. Cell Biol. 14(1):18–24, 2002CrossRefGoogle Scholar
  5. 5.
    Caudron M., G. Bunt, P. Bastiaens, E. Karsenti. Spatial coordination of spindle assembly by chromosome-mediated signaling gradients. Science 309(5739):1373–1376, 2005CrossRefGoogle Scholar
  6. 6.
    Cermelli S., Y. Guo, S. P. Gross, M. A. Welte. The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr. Biol. 16(18):1783–1795, 2006CrossRefGoogle Scholar
  7. 7.
    Francis N. R., M. N. Levit, T. R. Shaikh, L. A. Melanson, J. B. Stock, D. J. DeRosier. Subunit organization in a soluble complex of tar, CheW, and CheA by electron microscopy. J. Biol. Chem. 277(39):36755–36759, 2002CrossRefGoogle Scholar
  8. 8.
    Gardner M. K., C. G. Pearson, B. L. Sprague, T. R. Zarzar, K. Bloom, E. D. Salmon, and D. J. Odde. Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast. Mol. Biol. Cell 16(8):3764–3775, 2005CrossRefGoogle Scholar
  9. 9.
    Haugh J. M. Membrane-binding/modification model of signaling protein activation and analysis of its control by cell morphology. Biophys. J. 92(11):L93–L95, 2007CrossRefGoogle Scholar
  10. 10.
    Jacobson K., J. Wojcieszyn. The translational mobility of substances within the cytoplasmic matrix. Proc. Natl. Acad. Sci. USA 81(21):6747–6751, 1984CrossRefGoogle Scholar
  11. 11.
    Kalab P., A. Pralle, E. Y. Isacoff, R. Heald, K. Weis. Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature 440(7084):697–701, 2006CrossRefGoogle Scholar
  12. 12.
    Kalab P., K. Weis, R. Heald. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295(5564):2452–2456, 2002CrossRefGoogle Scholar
  13. 13.
    Li M., G. L. Hazelbauer. Cellular stoichiometry of the components of the chemotaxis signaling complex. J. Bacteriol. 186(12):3687–3694, 2004CrossRefGoogle Scholar
  14. 14.
    Lin A. C., C. E. Holt. Local translation and directional steering in axons. EMBO J 26(16):3729–3736, 2007CrossRefGoogle Scholar
  15. 15.
    Lipkow K. Changing cellular location of CheZ predicted by molecular simulations. PLoS Comput. Biol. 2(4):e39.CrossRefGoogle Scholar
  16. 16.
    Lipkow K., S. S. Andrews, D. Bray. Simulated diffusion of phosphorylated CheY through the cytoplasm of Escherichia coli. J. Bacteriol. 187(1):45–53, 2005CrossRefGoogle Scholar
  17. 17.
    Meyers J., J. Craig, D. J. Odde. Potential for control of signaling pathways via cell size and shape. Curr. Biol. 16(17):1685–1693, 2006CrossRefGoogle Scholar
  18. 18.
    Nalbant P., L. Hodgson, V. Kraynov, A. Toutchkine, K. M. Hahn. Activation of endogenous Cdc42 visualized in living cells. Science 305(5690):1615–1619, 2004CrossRefGoogle Scholar
  19. 19.
    Niethammer P., P. Bastiaens, E. Karsenti. Stathmin-tubulin interaction gradients in motile and mitotic cells. Science 303(5665):1862–1866, 2004CrossRefGoogle Scholar
  20. 20.
    Odde D. Diffusion inside microtubules. Eur. Biophys. J. 27(5):514–520, 1998CrossRefGoogle Scholar
  21. 21.
    Shrout A. L., D. J. Montefusco, R. M. Weis. Template-directed assembly of receptor signaling complexes. Biochemistry 42(46):13379–13385, 2003CrossRefGoogle Scholar
  22. 22.
    Sourjik V. Receptor clustering and signal processing in E. coli chemotaxis. Trends Microbiol. 12(12):569–576, 2004CrossRefGoogle Scholar
  23. 23.
    Sprague B. L., C. G. Pearson, P. S. Maddox, K. S. Bloom, E. D. Salmon, D. J. Odde. Mechanisms of microtubule-based kinetochore positioning in the yeast metaphase spindle. Biophys. J. 84(6):3529–3546, 2003CrossRefGoogle Scholar
  24. 24.
    Stewart R. C., K. Jahreis, J. S. Parkinson. Rapid phosphotransfer to CheY from a CheA protein lacking the CheY-binding domain. Biochemistry 39(43):13157–13165, 2000CrossRefGoogle Scholar
  25. 25.
    Swillens S., M. Paiva, J. E. Dumont. Consequences of the intracellular distribution of cyclic 3’,5’-nucleotides phosphodiesterases. FEBS Lett. 49(1):92–95, 1974CrossRefGoogle Scholar
  26. 26.
    Tostevin F., P. R. ten Wolde, M. Howard. Fundamental limits to position determination by concentration gradients. PLoS Comput. Biol. 3(4):e78, 2007CrossRefGoogle Scholar
  27. 27.
    Vaknin A., H. C. Berg. Single-cell FRET imaging of phosphatase activity in the Escherichia coli chemotaxis system. Proc. Natl. Acad. Sci. USA 101(49):17072–17077, 2004CrossRefGoogle Scholar
  28. 28.
    Wollman R., E. N. Cytrynbaum, J. T. Jones, T. Meyer, J. M. Scholey, A. Mogilner. Efficient chromosome capture requires a bias in the ‘search-and-capture’ process during mitotic-spindle assembly. Curr. Biol. 15(9):828–832, 2005CrossRefGoogle Scholar
  29. 29.
    Zhao R., E. J. Collins, R. B. Bourret, R. E. Silversmith. Structure and catalytic mechanism of the E. coli chemotaxis phosphatase CheZ. Nat. Struct. Biol. 9(8):570–575, 2002Google Scholar

Copyright information

© Biomedical Engineering Society 2008

Authors and Affiliations

  1. 1.Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
  2. 2.Department of Biochemistry, Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUK
  3. 3.Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations