Cellular and Molecular Bioengineering

, Volume 1, Issue 1, pp 42–50 | Cite as

Mesenchymal Stem Cell Therapy for Protection and Repair of Injured Vital Organs

  • D. van Poll
  • B. Parekkadan
  • I. H. M. Borel Rinkes
  • A. W. Tilles
  • M. L. Yarmush
Article

Abstract

Recently there has been a paradigm shift in what is considered to be the therapeutic promise of mesenchymal stem cells (MSCs) in diseases of vital organs. Originally, research focused on MSCs as a source of regenerative cells by differentiation of transplanted cells into lost cell types. It is now clear that trophic modulation of inflammation, cell death, fibrosis, and tissue repair are the main mechanisms of MSC therapy. Delivery of growth factors, cytokines, and other signaling molecules secreted by MSCs is often sufficient to obtain the therapeutic effects. In this article, we provide an overview of the current knowledge on trophic mechanisms of MSC therapy in disease models of vital organs. Important issues regarding the optimal delivery methods of MSC therapy are discussed and critical gaps in our knowledge hampering experimental progress and clinical implementation are identified.

Keywords

Mesenchymal stem cells Cytokines Growth factors Injury Tissue injury Vital organs Liver Heart Kidney Lung Brain Regeneration Apoptosis Paracrine Angiogenesis Inflammation Immune cells Fulminant hepatic failure 

References

  1. 1.
    Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105 (4): 1815.CrossRefGoogle Scholar
  2. 2.
    Banas A, Teratani T, Yamamoto Y, et al. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 2007; 46 (1): 219.CrossRefGoogle Scholar
  3. 3.
    Battegay EJ. Angiogenesis: mechanistic insights, neovascular diseases, and therapeutic prospects. J Mol Med 1995; 73 (7): 333.CrossRefGoogle Scholar
  4. 4.
    Berry MF, Engler AJ, Woo YJ, et al. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol 2006; 290 (6): H2196.CrossRefGoogle Scholar
  5. 5.
    Bhakta S, Hong P, Koc O. The surface adhesion molecule CXCR4 stimulates mesenchymal stem cell migration to stromal cell-derived factor-1 in vitro but does not decrease apoptosis under serum deprivation. Cardiovasc Revasc Med 2006; 7 (1): 19.CrossRefGoogle Scholar
  6. 6.
    Brachvogel B, Moch H, Pausch F, et al. Perivascular cells expressing annexin A5 define a novel mesenchymal stem cell-like population with the capacity to differentiate into multiple mesenchymal lineages. Development 2005; 132 (11): 2657.CrossRefGoogle Scholar
  7. 7.
    Caplan AI. Mesenchymal stem cells. J Orthop Res 1991; 9 (5): 641.CrossRefGoogle Scholar
  8. 8.
    Chen J, Li Y, Katakowski M, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 2003; 73 (6): 778.CrossRefGoogle Scholar
  9. 9.
    Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 2001; 32 (4): 1005.MathSciNetGoogle Scholar
  10. 10.
    Corcione, A., F. Benvenuto, E. Ferretti, et al. Human mesenchymal stem cells modulate B cell functions. Blood, 2005.Google Scholar
  11. 11.
    Correale J, Villa A. The neuroprotective role of inflammation in nervous system injuries. J Neurol 2004; 251 (11): 1304.CrossRefGoogle Scholar
  12. 12.
    Dexter TM. Stromal cell associated haemopoiesis. J Cell Physiol Suppl 1982; 1: 87.CrossRefGoogle Scholar
  13. 13.
    Dexter TM, Allen TD, Lajtha LG. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 1977; 91 (3): 335.CrossRefGoogle Scholar
  14. 14.
    Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99 (10): 3838.CrossRefGoogle Scholar
  15. 15.
    Dierks C, Grbic J, Zirlik K, et al. Essential role of stromally induced hedgehog signaling in B-cell malignancies. Nat Med 2007; 13 (8): 944.CrossRefGoogle Scholar
  16. 16.
    Djouad F, Bony C, Apparailly F, Louis-Plence P, Jorgensen C, Noel D. Earlier onset of syngeneic tumors in the presence of mesenchymal stem cells. Transplantation 2006; 82 (8): 1060.CrossRefGoogle Scholar
  17. 17.
    Djouad F, Plence P, Bony C, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003; 102 (10): 3837.CrossRefGoogle Scholar
  18. 18.
    Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8 (4): 315.CrossRefGoogle Scholar
  19. 19.
    Dorshkind K. Regulation of hemopoiesis by bone marrow stromal cells and their products. Annu Rev Immunol 1990; 8: 111.CrossRefGoogle Scholar
  20. 20.
    Drixler TA, Vogten MJ, Ritchie ED, et al. Liver regeneration is an angiogenesis-associated phenomenon. Annals of Surgery 2002; 236 (6): 703.CrossRefGoogle Scholar
  21. 21.
    Fang B, Shi M, Liao L, Yang S, Liu Y, Zhao RC. Systemic infusion of FLK1(+) mesenchymal stem cells ameliorate carbon tetrachloride-induced liver fibrosis in mice. Transplantation 2004; 78 (1): 83.CrossRefGoogle Scholar
  22. 22.
    Fiedler J, Brill C, Blum WF, Brenner RE. IGF-I and IGF-II stimulate directed cell migration of bone-marrow-derived human mesenchymal progenitor cells. Biochem Biophys Res Commun 2006; 345 (3): 1177.CrossRefGoogle Scholar
  23. 23.
    Fiedler J, Roderer G, Gunther KP, Brenner RE. BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. J Cell Biochem 2002; 87 (3): 305.CrossRefGoogle Scholar
  24. 24.
    Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res 2002; 53 (1): 31.CrossRefGoogle Scholar
  25. 25.
    Friedenstein AJ, Piatetzky S II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966; 16 (3): 381.Google Scholar
  26. 26.
    Gnecchi M, He H, Liang OD, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 2005; 11 (4): 367.CrossRefGoogle Scholar
  27. 27.
    Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 2007; 179 (3): 1855.Google Scholar
  28. 28.
    Haynesworth SE, Baber MA, Caplan AI. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol 1996; 166 (3): 585.CrossRefGoogle Scholar
  29. 29.
    Herrera, M. B., B. Bussolati, S. Bruno, et al. Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney Int., 2007.Google Scholar
  30. 30.
    Hofstetter CP, Schwarz EJ, Hess D, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci U S A 2002; 99 (4): 2199.CrossRefGoogle Scholar
  31. 31.
    Hung SC, Pochampally RR, Hsu SC, et al. Short-Term Exposure of Multipotent Stromal Cells to Low Oxygen Increases Their Expression of CX3CR1 and CXCR4 and Their Engraftment In Vivo. PLoS ONE 2007; 2: e416.CrossRefGoogle Scholar
  32. 32.
    Imberti B, Morigi M, Tomasoni S, et al. Insulin-Like Growth Factor-1 Sustains Stem Cell Mediated Renal Repair. J Am Soc Nephrol 2007; 18 (11): 2921.CrossRefGoogle Scholar
  33. 33.
    Jaeschke H, Smith CW. Mechanisms of neutrophil-induced parenchymal cell injury. J Leukoc Biol 1997; 61 (6): 647.Google Scholar
  34. 34.
    Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005; 105 (10): 4120.CrossRefGoogle Scholar
  35. 35.
    Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449 (7162): 557.CrossRefGoogle Scholar
  36. 36.
    Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 2004; 94 (5): 678.CrossRefGoogle Scholar
  37. 37.
    Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003; 101 (9): 3722.CrossRefGoogle Scholar
  38. 38.
    Kurozumi K, Nakamura K, Tamiya T, et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 2005; 11 (1): 96.CrossRefGoogle Scholar
  39. 39.
    Le Blanc K, Pittenger M. Mesenchymal stem cells: progress toward promise. Cytotherapy 2005; 7 (1): 36.CrossRefGoogle Scholar
  40. 40.
    Le Blanc K, Rasmusson I, Gotherstrom C, et al. Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scand J Immunol 2004; 60 (3): 307.CrossRefGoogle Scholar
  41. 41.
    Le Blanc K, Ringden O. Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2005; 11 (5): 321.CrossRefGoogle Scholar
  42. 42.
    Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003; 57 (1): 11.CrossRefGoogle Scholar
  43. 43.
    Lee KD, Kuo TK, Whang-Peng J, et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 2004; 40 (6): 1275.CrossRefGoogle Scholar
  44. 44.
    Li Y, Chen J, Zhang CL, et al. Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia 2005; 49 (3): 407.CrossRefGoogle Scholar
  45. 45.
    Mackenzie TC, Flake AWb. Human mesenchymal stem cells persist, demonstrate site-specific multipotential differentiation, and are present in sites of wound healing and tissue regeneration after transplantation into fetal sheep. Blood Cells Mol Dis 2001; 27 (3): 601.CrossRefGoogle Scholar
  46. 46.
    Matushansky I, Hernando E, Socci ND, et al. Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway. J Clin Invest 2007; 117 (11): 3248.CrossRefGoogle Scholar
  47. 47.
    McBride C, Gaupp D, Phinney DG. Quantifying levels of transplanted murine and human mesenchymal stem cells in vivo by real-time PCR. Cytotherapy 2003; 5 (1): 7.CrossRefGoogle Scholar
  48. 48.
    Mei SH, McCarter SD, Deng Y, Parker CH, Liles WC, Stewart DJ. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med 2007; 4 (9): e269.CrossRefGoogle Scholar
  49. 49.
    Meirelles, L. D., P. C. Chagastelles, and N. B. Nardi. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci., 2006.Google Scholar
  50. 50.
    Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 2004; 103 (12): 4619.CrossRefGoogle Scholar
  51. 51.
    Mirotsou M, Zhang Z, Deb A, et al. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci U S A 2007; 104 (5): 1643.CrossRefGoogle Scholar
  52. 52.
    Miyahara Y, Nagaya N, Kataoka M, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 2006; 12 (4): 459.CrossRefGoogle Scholar
  53. 53.
    Molin D, Post MJ. Therapeutic angiogenesis in the heart: protect and serve. Curr Opin Pharmacol 2007; 7 (2): 158.CrossRefGoogle Scholar
  54. 54.
    Morigi M, Imberti B, Zoja C, et al. Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 2004; 15 (7): 1794.CrossRefGoogle Scholar
  55. 55.
    Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci U S A 2005; 102 (50): 18171.CrossRefGoogle Scholar
  56. 56.
    Nagaya N, Kangawa K, Itoh T, et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 2005; 112 (8): 1128.CrossRefGoogle Scholar
  57. 57.
    Ohnishi S, Yanagawa B, Tanaka K, et al. Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis. J Mol Cell Cardiol 2007; 42 (1): 88.CrossRefGoogle Scholar
  58. 58.
    Ortiz, L. A., M. Dutreil, C. Fattman, et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc. Natl. Acad. Sci. U.S.A., 2007.Google Scholar
  59. 59.
    Ortiz LA, Gambelli F, McBride C, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A 2003; 100 (14): 8407.CrossRefGoogle Scholar
  60. 60.
    Oswald J, Boxberger S, Jorgensen B, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 2004; 22 (3): 377.CrossRefGoogle Scholar
  61. 61.
    Ozaki Y, Nishimura M, Sekiya K, et al. Comprehensive analysis of chemotactic factors for bone marrow mesenchymal stem cells. Stem Cells Dev 2007; 16 (1): 119.CrossRefGoogle Scholar
  62. 62.
    Parekkadan B, van Poll D, Megeed Z, et al. Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells. Biochem Biophys Res Commun 2007; 363 (2): 247.CrossRefGoogle Scholar
  63. 63.
    Parekkadan B, van Poll D, Suganuma K, et al. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS ONE 2007; 2 (9): e941.CrossRefGoogle Scholar
  64. 64.
    Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284 (5411): 143.CrossRefGoogle Scholar
  65. 65.
    Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 2004; 95 (1): 9.CrossRefGoogle Scholar
  66. 66.
    Plumas J, Chaperot L, Richard MJ, Molens JP, Bensa JC, Favrot MC. Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia 2005; 19 (9): 1597.CrossRefGoogle Scholar
  67. 67.
    Ponte AL, Marais E, Gallay N, et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 2007; 25 (7): 1737.CrossRefGoogle Scholar
  68. 68.
    Potapova, I. A., G. R. Gaudette, P. R. Brink, et al. Mesenchymal stem cells support migration, extracellular matrix invasion, proliferation and survival of endothelial cells in vitro. Stem Cells, 2007.Google Scholar
  69. 69.
    Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276 (5309): 71.CrossRefGoogle Scholar
  70. 70.
    Ries C, Egea V, Karow M, Kolb H, Jochum M, Neth P. MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood 2007; 109 (9): 4055.CrossRefGoogle Scholar
  71. 71.
    Rivera FJ, Couillard-Despres S, Pedre X, et al. Mesenchymal stem cells instruct oligodendrogenic fate decision on adult neural stem cells. Stem Cells 2006; 24 (10): 2209.CrossRefGoogle Scholar
  72. 72.
    Rochefort GY, Delorme B, Lopez A, et al. Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells 2006; 24 (10): 2202.CrossRefGoogle Scholar
  73. 73.
    Sadat S, Gehmert S, Song YH, et al. The cardioprotective effect of mesenchymal stem cells is mediated by IGF-I and VEGF. Biochem Biophys Res Commun 2007; 363 (3): 674.CrossRefGoogle Scholar
  74. 74.
    Saito T, Kuang JQ, Bittira B, Al-Khaldi A, Chiu RC. Xenotransplant cardiac chimera: immune tolerance of adult stem cells. Ann Thorac Surg 2002; 74 (1): 19.CrossRefGoogle Scholar
  75. 75.
    Sakaida I, Terai S, Yamamoto N, et al. Transplantation of bone marrow cells reduces CCl(4)-induced liver fibrosis in mice. Hepatology (Baltimore, Md.) 2004; 40 (6): 1304.CrossRefGoogle Scholar
  76. 76.
    Schmidt A, Ladage D, Schinkothe T, et al. Basic fibroblast growth factor controls migration in human mesenchymal stem cells. Stem Cells 2006; 24 (7): 1750.CrossRefGoogle Scholar
  77. 77.
    Schrepfer S, Deuse T, Reichenspurner H, Fischbein MP, Robbins RC, Pelletier MP. Stem cell transplantation: the lung barrier. Transplant Proc 2007; 39 (2): 573.CrossRefGoogle Scholar
  78. 78.
    Selmani, Z., A. Naji, I. Zidi, et al. HLA-G5 secretion by Human Mesenchymal Stem Cells Is Required to Suppress T-lymphocyte and NK Function and to Induce CD4+CD25highFOXP3+ Regulatory T Cells. Stem Cells, 2007.Google Scholar
  79. 79.
    Semedo P, Wang PM, Andreucci TH, et al. Mesenchymal Stem Cells Ameliorate Tissue Damages Triggered by Renal Ischemia and Reperfusion Injury. Transplant Proc 2007; 39 (2): 421.CrossRefGoogle Scholar
  80. 80.
    Son BR, Marquez-Curtis LA, Kucia M, et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 2006; 24 (5): 1254.CrossRefGoogle Scholar
  81. 81.
    Sotiropoulou P. A., S. A. Perez, A. D. Gritzapis, C. N. Baxevanis, and M. Papamichail. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells, 2005.Google Scholar
  82. 82.
    Sundin M, Orvell C, Rasmusson I, Sundberg B, Ringden O, Le Blanc K. Mesenchymal stem cells are susceptible to human herpesviruses, but viral DNA cannot be detected in the healthy seropositive individual. Bone Marrow Transplant 2006; 37 (11): 1051.CrossRefGoogle Scholar
  83. 83.
    Tang YL, Zhao Q, Qin X, et al. Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg 2005; 80 (1): 229.CrossRefGoogle Scholar
  84. 84.
    Tang YL, Zhao Q, Zhang YC, et al. Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regul Pept 2004; 117 (1): 3.CrossRefGoogle Scholar
  85. 85.
    Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 2005; 289 (1): F31.CrossRefGoogle Scholar
  86. 86.
    Togel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 2007; 292 (5): F1626.CrossRefGoogle Scholar
  87. 87.
    Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002; 105 (1): 93.CrossRefGoogle Scholar
  88. 88.
    Tomita S, Li RK, Weisel RD, Kim EJ, Sakai T, Jia ZQ. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999; 100 (19 Suppl): II247.Google Scholar
  89. 89.
    Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 2003; 75 (3): 389.CrossRefGoogle Scholar
  90. 90.
    van Poll, D., B. Parekkadan, C. H. Cho, et al. Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology, 2008 (in press).Google Scholar
  91. 91.
    Voelkel NF, Douglas IS, Nicolls M. Angiogenesis in chronic lung disease. Chest 2007; 131 (3): 874.CrossRefGoogle Scholar
  92. 92.
    Wakitani S, Saito T, Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 1995; 18 (12): 1417.CrossRefGoogle Scholar
  93. 93.
    Wang L, Li Y, Chen X, et al. MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology 2002; 7 (2): 113.CrossRefGoogle Scholar
  94. 94.
    Wang D, Park JS, Chu JS, et al. Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor beta1 stimulation. J Biol Chem 2004; 279 (42): 43725.CrossRefGoogle Scholar
  95. 95.
    Wang L, Zhang Z, Wang Y, Zhang R, Chopp M. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 2004; 35 (7): 1732.CrossRefGoogle Scholar
  96. 96.
    Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000; 61 (4): 364.CrossRefGoogle Scholar
  97. 97.
    Xu J, Woods CR, Mora AL, et al. Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. Am J Physiol Lung Cell Mol Physiol 2007; 293 (1): L131.CrossRefGoogle Scholar
  98. 98.
    Xu W, Zhang X, Qian H, et al. Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp Biol Med (Maywood) 2004; 229 (7): 623.Google Scholar
  99. 99.
    Zhang, M., N. Mal, M. Kiedrowski, et al. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J, 2007.Google Scholar
  100. 100.
    Zhao DC, Lei JX, Chen R, et al. Bone marrow-derived mesenchymal stem cells protect against experimental liver fibrosis in rats. World J Gastroenterol 2005; 11 (22): 3431.Google Scholar
  101. 101.
    Zhu H, Mitsuhashi N, Klein A, et al. The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells 2006; 24 (4): 928.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2008

Authors and Affiliations

  • D. van Poll
    • 1
    • 2
  • B. Parekkadan
    • 1
    • 3
  • I. H. M. Borel Rinkes
    • 2
  • A. W. Tilles
    • 1
  • M. L. Yarmush
    • 1
    • 3
  1. 1.Surgical Services and Center for Engineering in MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Department of SurgeryUniversity Medical Center, University of UtrechtUtrechtThe Netherlands
  3. 3.Harvard-MIT Division of Health Sciences and TechnologyCambridgeUSA

Personalised recommendations