Skip to main content

Advertisement

Log in

Discovery of the luminescence of water during irradiation of radiation at a lower energy than the Cherenkov light threshold

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

It is widely believed that light is not emitted in water during irradiation of radiation at energies lower than the Cherenkov light threshold. Contrary to this consensus, we discovered that light (luminescence) is emitted in water during irradiation of radiation, and imaging of this luminescence was possible. In this review, the author describes the optical images obtained for various types of radiation, their characteristics and origins, and potential applications of the luminescence of water during irradiation at a lower energy than the Cherenkov light threshold. The author also describes the luminescence of other transparent materials and future prospects of the discovered luminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jelley JV. Cherenkov radiation and its applications. Oxford: Pergamon Press; 1958.

    Google Scholar 

  2. Glaser AK, Davis SC, McClatchy DM, Zhang R, Pogue BW, Gladstone DJ. Projection imaging of photon beams by the Cerenkov effect. Med Phys. 2013;40(1):012101.

    Article  Google Scholar 

  3. Glaser AK, Davis SC, Voigt WH, Zhang BW, Pogue DJ, Gladstone, Projection imaging of photon beams using Cerenkov-excited fluorescence. Phys Med Biol. 2013;58(3):601–19.

    Article  Google Scholar 

  4. Zhang R, Glaser AK, Gladstone DJ, Fox CJ, Pogue BW. Superficial dosimetry imaging based on Čerenkov emission for external beam radiotherapy with megavoltage X-ray beam. Med Phys. 2013;40(10):101914.

    Article  Google Scholar 

  5. Helo Y, Rosenberg I, D'Souza D, Macdonald L, Speller R, Royle G, Gibson A. Imaging Cerenkov emission as a quality assurance tool in electron radiotherapy. Phys Med Biol. 2014;59(8):1963–78.

    Article  Google Scholar 

  6. Yamamoto S, Okudaira K, Kawabata F, Nakaya T, Oguchi H. Optical imaging of water during X-ray beam irradiations from linear accelerator. Nuclear Inst Methods Phys Res A. 2017;872:174–80.

    Article  CAS  Google Scholar 

  7. Robertson R, Germanos MS, Li C, Mitchell GS, Cherry SR, Silva MD. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol. 2009;54:N355–N365365.

    Article  CAS  Google Scholar 

  8. Cho JS, Taschereau R, Olma S, et al. Cerenkov radiation imaging as a method for quantitative measurements of beta particles in a microfluidic chip. Phys Med Biol. 2009;54:6757–71.

    Article  CAS  Google Scholar 

  9. Liu H, Ren G, Miao Z, et al. Molecular optical imaging with radioactive probes. PLoS ONE. 2010;5:e9470.

    Article  Google Scholar 

  10. Ruggiero A, Holland JP, Lewis JS, Grimm J. Cerenkov luminescence imaging of medical isotopes. J Nucl Med. 2010;51:1123–30.

    Article  CAS  Google Scholar 

  11. Park JC, Il An G, Park SI, et al. Luminescence imaging using radionuclides: apotential application in molecular imaging. Nucl Med Biol. 2011;38(3):321–9.

    Article  Google Scholar 

  12. Helo Y, Kacperek A, Rosenberg I, Royle G, Gibson AP. The physics of Cerenkov light production during proton therapy. Phys Med Biol. 2014;59(23):7107–23.

    Article  CAS  Google Scholar 

  13. Glaser AK, Zhang R, Gladstone DJ, Pogue BW. Optical dosimetry of radiotherapy beams using Cherenkov radiation: the relationship between light emission and dose. Phys Med Biol. 2014;59(14):3789–811.

    Article  Google Scholar 

  14. Yamamoto S, Toshito T, Okumura S, Komori M. Luminescence imaging of water during proton-beam irradiation for range estimation. Med Phys. 2015;42(11):6498–506.

    Article  CAS  Google Scholar 

  15. Yamamoto S, Komori M, Akagi T, Yamashita T, Koyama S, Morishita Y, Sekihara E, Toshito T. Luminescence imaging of water during carbon-ion irradiation for range estimation. Med Phys. 2016;43:2455–63.

    Article  CAS  Google Scholar 

  16. Yamamoto S, Koyama S, Komori M, Toshito T. Luminescence imaging of water during irradiation of X-ray photons lower energy than Cerenkov light threshold. Nuclear Inst Methods Phys Res A. 2016;832(1):264–70.

    Article  CAS  Google Scholar 

  17. Yamamoto S, Watabe T, Ikeda H, Kanai Y, Watabe H, et al. Ultrahigh-resolution Cerenkov-light imaging system for positron radionuclides: potential applications and limitations. Ann Nucl Med. 2014;28(10):961–9.

    Article  CAS  Google Scholar 

  18. Masuda T, Kataoka J, Arimoto M, Takabe M, Nishio T, Matsushita K, et al. Measurement of nuclear reaction cross sections by using Cherenkov radiation toward high-precision proton therapy. Sci Rep. 2018;8(1):2570.

    Article  Google Scholar 

  19. Kang HG, Yamamoto S, Takyu S, Nishikido F, Mohammadi A, Horita R, Sato S, Yamaya T. Optical imaging for the characterization of radioactive carbon and oxygen ion beams. Phys Med Biol. 2019;64(10pp):115009.

    Article  CAS  Google Scholar 

  20. Yamamoto S, Komori M, Koyama S, Toshito T. Luminescence imaging of water during alpha particle irradiation. Nucl Instrum Methods Phys Res, Sect A. 2016;819(21):6–13.

    Article  CAS  Google Scholar 

  21. Yamamoto S. Luminescence imaging of water during irradiation of beta particles with energy lower than Cerenkov-light threshold. IEEE Trans Radiat Plasma Med Sci. 2017;1(4):329–33.

    Article  Google Scholar 

  22. Yamamoto S, Kato K, Abe S. Optical imaging of produced light in water during irradiation of gamma photons lower energy than the Cerenkov-light threshold. Appl Radiat Isot. 2020;157(7pp):109037.

    Article  CAS  Google Scholar 

  23. Yamamoto S, Koyama S, Yabe T, Komori M, Tada J, Ito S, Toshito T, Hirata Y, Watanabe K. Stability and linearity of luminescence imaging of water during irradiation of proton-beams and X-ray photons lower energy than the Cerenkov light threshold. Nuclear Inst Methods Phys Res A. 2018;883(1):48–56.

    Article  CAS  Google Scholar 

  24. Yabe T, Sasano M, Hirano Y, Toshito T, Akagi T, Yamashita T, Hayashi M, Azuma T, Sakamoto Y, Komori M, Yamamoto S. Addition of luminescence process in Monte Carlo simulation to precisely estimate the emitted light from water during proton and carbon-ion irradiations. Phys Med Biol. 2018;63(12pp):125019.

    Article  Google Scholar 

  25. Yamamoto S, Akagi T, Yamashita T, Toivonen J, Yamaguchi M, Komori M, Kawachi N. Source of luminescence of water lower energy than the Cerenkov-light threshold during irradiation of carbon-ion. J Phys Commun. 2018;2:065010.

    Article  Google Scholar 

  26. Yamamoto S, Horita R, Toshito T, Komori M. Imaging of the scintillation light of float and silica glasses during irradiation of radiations. J Instrum. 2018;13:P10021.

    Article  Google Scholar 

  27. Horita R, Yamamoto S, Yogo K, Komori M, Toshito T. Three-dimensional (3D) dose distribution measurements of proton beam using a glass plate. Biomed Phys Eng Express. 2019;5:045033.

    Article  Google Scholar 

  28. Yabe T, Komori M, Horita R, Toshito T, Yamamoto S. Estimation of the optical errors on the luminescence imaging of water for proton beam. Nucl Inst Methods Phys Res A. 2018;888:163–8.

    Article  CAS  Google Scholar 

  29. Yabe T, Komori M, Toshito T, Yamaguchi M, Kawachi N, Yamamoto S. Estimation and correction of produced light from prompt gamma photons on luminescence imaging of water for proton therapy dosimetry. Phys Med Biol. 2018;63:04NT02.

    Article  Google Scholar 

  30. Yabe T, Akagi T, Yamamoto S. Estimation and correction of Cerenkov-light on luminescence image of water for carbon-ion therapy dosimetry. Physica Med. 2020;74:118–24.

    Article  Google Scholar 

  31. Yabe T, Yamamoto S, Oda M, Mori K, Toshito T, Akagi T. Prediction of dose distribution from luminescence image of water using a deep convolutional neural network for particle therapy. Med Phys. 2020;47(9):3882–91.

    Article  Google Scholar 

  32. Komori M, Sekihara E, Yabe T, Horita R, Toshito T, Yamamoto S. Luminescence imaging of water during uniform field irradiation by spot scanning proton beams. Phys Med Biol. 2018;63:11NT01.

    Article  Google Scholar 

Download references

Acknowledgements

The author is deeply thankful to many excellent research collaborators for the imaging experiments, data analysis, and specific advices and general discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiichi Yamamoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, S. Discovery of the luminescence of water during irradiation of radiation at a lower energy than the Cherenkov light threshold. Radiol Phys Technol 14, 16–24 (2021). https://doi.org/10.1007/s12194-020-00588-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-020-00588-x

Keywords

Navigation