Advertisement

Effectiveness of a novel real-time dosimeter in interventional radiology: a comparison of new and old radiation sensors

  • Yohei Inaba
  • Masaaki Nakamura
  • Koichi Chida
  • Masayuki Zuguchi
Article

Abstract

Radiation dose management is important in interventional radiology (IR) procedures, such as percutaneous coronary intervention, to prevent radiation-induced injuries. Therefore, radiation dose should be monitored in real time during IR. This study evaluated the fundamental characteristics of a novel real-time skin dosimeter (RTSD) developed at our institution. In addition, we compared the performance of our new and old radiation sensors and that of a skin dose monitor (SDM), with ion chamber reference values. We evaluated the fundamental characteristics (e.g., energy dependence, dose dependence, and angular dependence) of the RTSD developed by us in the diagnostic X-ray energy range. The performance of our RTSD was similar to that of the SDM. In particular, the new radiation sensor of our RTSD demonstrated better dose rate dependence compared to the old sensor. In addition, the new sensor had the advantage of being small in size and thus minimally affecting the X-ray images compared to the old sensor. Therefore, the developed skin dosimeter and radiation sensor may be useful in real-time measurement of patients’ exposure to and multi-channel monitoring of radiation in IR procedures. The new dosimeter system can be recommended for visualization and management of the radiation dose to which the patients’ skin is exposed.

Keywords

Interventional radiology Radiation dose Radiation skin injuries Real-time skin dosimeter 

Notes

Acknowledgements

We thank Takafumi Honda and Fumitaka Sato of the Tohoku University for their invaluable assistance. This work was supported in part by a Grant-in-Aid for Scientific Research (17K10392) from the Japan Society for the Promotion of Science.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants

This article does not contain any studies with human participants performed.

Research involving animals

This article does not contain any studies with animals performed.

References

  1. 1.
    International Commission on Radiological Protection (ICRP). Avoidance of radiation injuries from medical interventional procedures, ICRP Publication 85. Ann ICRP. 2000;30(2):1–53.CrossRefGoogle Scholar
  2. 2.
    Kato M, Chida K, Sato T, Oosaka H, Tosa T, Munehisa M, Kadowaki K. The necessity of follow-up for radiation skin injuries in patients after percutaneous coronary interventions: radiation skin injuries will often be overlooked clinically. Acta Radiol. 2012;53:1040–4.CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Chida K, Saito H, Otani H, Kohzuki M, Takahashi S, Yamada S, Shirato K, Zuguchi M. Relationship between fluoroscopic time, dose–area product, body weight, and maximum radiation skin dose in cardiac interventional procedure. Am J Roentgenol. 2006;186:774–8.CrossRefGoogle Scholar
  4. 4.
    Chida K, Kagaya Y, Saito H, Chiba H, Takai Y, Takahashi S, Yamada S, Kohzuki M, Zuguchi M. Total entrance skin dose: an effective indicator of the maximum radiation dose to a patient’s skin during percutaneous coronary intervention. Am J Roentgenol. 2007;189:W224–7.CrossRefGoogle Scholar
  5. 5.
    Chida K, Ohno T, Kakizaki S, Takegawa M, Yuuki H, Nakada M, Takahashi S, Zuguchi M. Radiation dose to the pediatric cardiac catheterization and intervention patient. Am J Roentgenol. 2010;195:1175–9.CrossRefGoogle Scholar
  6. 6.
    International Commission on Radiological Protection (ICRP). Radiological protection in cardiology, ICRP Publication 120. Ann ICRP. 2013;42(1):1–100.CrossRefGoogle Scholar
  7. 7.
    Kato M, Chida K, Sato T, Oosaka H, Tosa T, Kadowaki K. Evaluating the maximum patient radiation dose in cardiac interventional procedures. Radiat Prot Dosimetry. 2011;143:69–73.CrossRefPubMedCentralGoogle Scholar
  8. 8.
    International Commission on Radiological Protection (ICRP). The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP. 2007;37(2–4):1–332.Google Scholar
  9. 9.
    Chida K, Zuguchi M, Saito H, Otani H, Shirotori K, Kumagai S, Nakayama H, Matsubara K, Kohzuki M. Does digital acquisition reduce patients’ skin dose in cardiac interventional procedures? An experimentalstudy. Am J Roentgenol. 2004;183:1111–4.CrossRefGoogle Scholar
  10. 10.
    Chida K, Inaba Y, Saito H, Ishibashi T, Takahashi S, Kohzuki M, Zuguchi M. Radiation dose of interventional radiology system using a flat-panel detector. Am J Roentgenol. 2009;193:1680–5.CrossRefGoogle Scholar
  11. 11.
    Tsapaki V, Ahmed NA, Alsuwaidi JS, Beganovic A, Benider A, BenOmarane L, et al. Radiation exposure to patients during interventional procedures in 20 countries: initial IAEA project results. Am J Roentgenol. 2009;193:559–69.CrossRefGoogle Scholar
  12. 12.
    Inaba Y, Chida K, Shirotori K, Shimura H, Yanagawa I, Zuguchi M, Takahashi S. Comparison of the radiation dose in a cardiac IVR X-ray system. Radiat Prot Dosimetry. 2011;143(1):74–80.CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Chida K, Inaba Y, Masuyama H, Yanagawa I, Mori I, Saito H, Maruoka S, Zuguchi M. Comparison of dose at an interventional reference point between the displayed estimated value and measured value. Radiol Phys Technol. 2011;4:189–93.CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Chida K, Inaba Y, Masuyama H, Yanagawa I, Mori I, Saito H, Maruoka S, Zuguchi M. Evaluating the performance of a MOSFET dosimeter at diagnostic X-ray energies for interventional radiology. Radiol Phys Technol. 2009;2:58–61.CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Inaba Y, Chida K, Kobayashi R, Zuguchi M. A cross-sectional study of the radiation dose and image quality of X-ray equipment used in IVR. J Appl Clin Med Phys. 2016;17(4):391–401.CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Nakamura M, Chida K, Zuguchi M. Novel dosimeter using a nontoxic phosphor for real-time monitoring of patient radiation dose in interventinal radiology. Am J Roentgenol. 2015;205:202–6.CrossRefGoogle Scholar
  17. 17.
    Chida K, Kato M, Inaba Y, Kobayashi R, Nakamura M, Abe Y, Zuguchi M. Real-time patient radiation dosimeter for use in interventional radiology. Physica Med. 2016;32:1475–8.CrossRefGoogle Scholar
  18. 18.
    Farah J, Cuttat M, Hadid L, Jenny C, Clairand I. Patient dosimetry in interventional radiology: uncertainties associated to skin dose measurement and exposure correlation to online dose indicators. Phys Med. 2015;31:e46-7.CrossRefGoogle Scholar
  19. 19.
    Morishima T, Chida K, Katahira Y, Onodera R, Takeda K, Chiba H. Performance evaluation of a new real-time patient skin dosimeter. Jpn J Clin Radiol. 2011;56(6):779–85 (in Japanease).Google Scholar
  20. 20.
    Vano E, Escaned J, Vano-Galvan S, Fernandez JM, Galvan C. Importance of a patient dosimetry and clinical follow-up program in the detection of radiodermatitis after long percutaneous coronary interventions. Cardiovasc Intervent Radiol. 2013;36(2):330–7.CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Bogaert E, Bacher K, Thierens H. A large-scale multicenter study of patient skin doses in interventional cardiology: dose-area product action levels and dose reference levels. Radiat Prot Dosimetry. 2008;128(3):312–23.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Johnson PB, Borrego D, Balter S, Johnson K, Siragusa D, Bolch WE. Skin dose mapping for fluoroscopically guided intervntions. Med Phys. 2011;38(10):5490–9.CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Borrego D, Marshall EL, Tran T, Siragusa DA, Bolch WE. Physical validation of UF-RIPSA: A rapid in-clinic peak skin dose mapping algorithm for fluoroscopically guided interventions. J Appl Clin Med Phys. 2018;19(3):343–50.CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Inaba Y, Chida K, Kobayashi R, Kaga Y, Zuguchi M. Fundamental study of a real-time occupational dosimetry system for interventional radiology staff. J Radiol Prot. 2014;34:N65–71.CrossRefPubMedCentralGoogle Scholar

Copyright information

© Japanese Society of Radiological Technology and Japan Society of Medical Physics 2018

Authors and Affiliations

  • Yohei Inaba
    • 1
    • 2
  • Masaaki Nakamura
    • 1
  • Koichi Chida
    • 1
    • 2
  • Masayuki Zuguchi
    • 1
  1. 1.Department of Radiological Technology, Faculty of MedicineTohoku University School of Health SciencesSendaiJapan
  2. 2.Department of Radiation Disaster Medicine, International Research Institute of Disaster ScienceTohoku UniversitySendaiJapan

Personalised recommendations