Radiological Physics and Technology

, Volume 9, Issue 2, pp 139–153 | Cite as

Dynamic chest radiography: flat-panel detector (FPD) based functional X-ray imaging

Article

Abstract

Dynamic chest radiography is a flat-panel detector (FPD)-based functional X-ray imaging, which is performed as an additional examination in chest radiography. The large field of view (FOV) of FPDs permits real-time observation of the entire lungs and simultaneous right-and-left evaluation of diaphragm kinetics. Most importantly, dynamic chest radiography provides pulmonary ventilation and circulation findings as slight changes in pixel value even without the use of contrast media; the interpretation is challenging and crucial for a better understanding of pulmonary function. The basic concept was proposed in the 1980s; however, it was not realized until the 2010s because of technical limitations. Dynamic FPDs and advanced digital image processing played a key role for clinical application of dynamic chest radiography. Pulmonary ventilation and circulation can be quantified and visualized for the diagnosis of pulmonary diseases. Dynamic chest radiography can be deployed as a simple and rapid means of functional imaging in both routine and emergency medicine. Here, we focus on the evaluation of pulmonary ventilation and circulation. This review article describes the basic mechanism of imaging findings according to pulmonary/circulation physiology, followed by imaging procedures, analysis method, and diagnostic performance of dynamic chest radiography.

Keywords

Chest radiography Functional imaging Flat-panel detector (FPD) Ventilation Circulation Dynamic image analysis 

Notes

Acknowledgments

The author is grateful to the staff in the department of Radiology, Respiratory Medicine, and Respiratory Surgery, Clinical Laboratory, Kanazawa University Hospital, and staff from Canon Inc., for their assistance with clinical data acquisitions, and to Shigeru Sanada, PhD, for his frequent support over the course of the project, and Nobuo Okazaki, MD, for his intellectual debate on respiratory physiology. This work was supported in part by The Ministry of Education, Culture, Sports, Science and Technology, MEXT KAKENHI Grant Number 16K10271, 24601007, 19790860; JSPS Grant-in-Aid for Scientific Research on Innovative Areas (Multidisciplinary Computational Anatomy) JSPS KAKENHI Grant Number 15H01113; The Tateisi Science and Technology Foundation, Nakashima Foundation, Konica Minolta Science and Technology Foundation, Suzuken Memorial Foundation, Japan Cardiovascular Research Foundation, Nakatani Foundation, The Mitani Foundation for Research and Development, and The Mitsubishi Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kourilsky R, Marchalm M, Marchal MT. A new method of functional x-ray exploration of the lungs: photoelectric statidensigraphy. Dis chest. 1962;42:345–58.CrossRefPubMedGoogle Scholar
  2. 2.
    Andrews AH, Jensik R, Pfisterer WH. Fluoroscopic pulmonary densiography. Dis chest. 1959;35:117–26.CrossRefPubMedGoogle Scholar
  3. 3.
    Steiner RE, Laws JW, Gilbert J, Mcdonnell MJ. Radiologic lung-function studies. Lancet. 1960;2:1051–5.CrossRefGoogle Scholar
  4. 4.
    Oderr C. Air trapping, pulmonary insufficiency and fluorodensimetry. Am J Roentgen. 1964;92:501–12.PubMedGoogle Scholar
  5. 5.
    George RB, Weill H, Tahir AH. Fluorodensimetric evaluation of regional ventilation in chronic obstructive pulmonary disease. South Med J. 1971;64:1161–5.CrossRefPubMedGoogle Scholar
  6. 6.
    George RB, Weill H. Fluorodensimetry. A method for analyzing regional ventilation and diaphragm function. JAMA. 1971;217:171–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Silverman NR. Clinical video-densitometry pulmonary ventilation analysis. Radiology. 1972;103:263–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Silverman NR, Intaglietta M, Simon AL, Tompkins WR. Determination of pulmonary pulsatile perfusion by fluoroscopic videodensitometry. J Appl Physiol. 1972;33:147–9.PubMedGoogle Scholar
  9. 9.
    Silverman NR, Intaglietta M, Tompkins WR. Pulmonary ventilation and perfusion during graded pulmonary arterial occlusion. J Appl Physiol. 1973;34:726–31.PubMedGoogle Scholar
  10. 10.
    Rogers RM, Kuhl DE, Hyde RW, et al. Measurement of the vital capacity and perfusion of each lung by fluoroscopy and macroaggregated albumin lung scanning. An alternative to bronchospirometry for evaluating. Ann Intern Med. 1967;67:947–56.CrossRefPubMedGoogle Scholar
  11. 11.
    Toffolo RR, Beerel FR. The autofluoroscope and 133-Xe in dynamic studies of pulmonary perfusion and ventilation. Radiology. 1970;94:692–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Lam KL, Chan HP, MacMahon H, et al. Dynamic digital subtraction evaluation of regional pulmonary ventilation with nonradioactive xenon. Invest. Radiolo. 1990;25:728–35.CrossRefGoogle Scholar
  13. 13.
    Fujita H, Doi K, MacMahon H. Basic imaging properties of a large image intensifier-TV digital chest radiographic system. Invest. Radiol. 1987;22:328–35.CrossRefPubMedGoogle Scholar
  14. 14.
    Bursch JH. Densitometric studies in digital subtraction angiography: assessment of pulmonary and myocardial perfusion. Herz. 1985;10:208–14.PubMedGoogle Scholar
  15. 15.
    Liang J, Jarvi T, Kiuru A, Kormano M, Svedström E. Dynamic chest image analysis: model-based perfusion analysis in dynamic pulmonary imaging. J Appl Signal Process. 1985;5:437–48.Google Scholar
  16. 16.
    Hoffmann KR, Doi K, Fencil LE. Determination of instantaneous and average blood flow rates from digital angiograms of vessel phantoms using distance-density curves. Invest Radiol. 1991;26:207–12.CrossRefPubMedGoogle Scholar
  17. 17.
    Desprechins B, Luypaert R, Delree M, et al. Evaluation of time interval difference digital subtraction fluoroscopy patients with cystic fibrosis. Scand J Gastroenterol Suppl. 1988;143:86–92.CrossRefPubMedGoogle Scholar
  18. 18.
    Kiuru A, Svedstrom E, Kuuluvainen I. Dynamic imaging of pulmonary ventilation. Description of a novel digital fluoroscopic system. Acta Radiol. 1991;32:114–9.PubMedGoogle Scholar
  19. 19.
    Kiuru A, Svedstrom E, Korvenranta H, et al. Dynamic pulmonary imaging: performance properties of a digital fluoroscopy system. Med Phys. 1992;19:467–73.CrossRefPubMedGoogle Scholar
  20. 20.
    Vano E, Geiger B, Schreiner A, et al. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality. Phys Med Biol. 2005;50:5731–42.CrossRefPubMedGoogle Scholar
  21. 21.
    Srinivas Y, Wilson DL. Image quality evaluation of flat panel and image intensifier digital magnification in x-ray fluoroscopy. Med Phys. 2002;29:1611–21.CrossRefPubMedGoogle Scholar
  22. 22.
    Tanaka R, Sanada S, Okazaki N, Kobayashi T, Fujimura M, Yasui M, Matsui T, Nakayama K, Nanbu Y, Matsui O. Evaluation of pulmonary function using breathing chest radiography with a dynamic flat-panel detector (FPD): primary results in pulmonary diseases. Invest Radiol. 2006;41:735–45.CrossRefPubMedGoogle Scholar
  23. 23.
    Tanaka R, Sanada S, Okazaki N, Kobayashi T, Nakayama K, Matsui T, Hayashi N, Matsui O. Quantification and visualization of relative local ventilation on dynamic chest radiographs. In: The international society for optical engineering. Medical imaging. Proceedings of SPIE. Vol. 6143, No. 2; 2006. p. 1–8 (62432Y).Google Scholar
  24. 24.
    Tanaka R, Sanada S, Fujimura M, Yasui M, Nakayama K, Matsui T, Hayashi N, Matsui O. Development of functional chest imaging with a dynamic flat-panel detector (FPD). Radiol Phys Technol. 2008;1:137–43.CrossRefPubMedGoogle Scholar
  25. 25.
    Tanaka R, Sanada S, Fujimura M, Yasui M, Tsuji S, Hayashi N, Okamoto H, Nanbu Y, Matsui O. Ventilatory impairment detection based on distribution of respiratory-induced changes in pixel values in dynamic chest radiography: a feasibility study. IJCARS. 2011;6:103–10.Google Scholar
  26. 26.
    Tanaka R, Sanada S, Tsujioka K, Matsui T, Takata T, Matsui O. Development of a cardiac evaluation method using a dynamic flat-panel detector (FPD) system: a feasibility study using a cardiac motion phantom. Radiol Phys Technol. 2008;1:27–32.CrossRefPubMedGoogle Scholar
  27. 27.
    Tanaka R, Sanada S, Fujimura M, Yasui M, Tsuji S, Hayashi N, Okamoto H, Nanbu Y, Matsui O. Pulmonary blood flow evaluation using a dynamic flat-panel detector: feasibility study with pulmonary diseases. IJCARS. 2009;4:449–54.Google Scholar
  28. 28.
    Tanaka R, Sanada S, Fujimura M, Yasui M, Tsuji S, Hayashi N, Okamoto H, Nanbu Y, Matsui O. Development of pulmonary blood flow evaluation method with a dynamic flat-panel detector (FPD): quantitative correlation analysis with findings on perfusion scan. Radiol Phys Technol. 2010;3:40–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Tanaka R, Sanada S, Fujimura M, Yasui M, Tsuji S, Hayashi N, Okamoto H, Nanbu Y, Matsui O. Ventilation-perfusion study without contrast media in dynamic chest radiography. In: The international society for optical engineering. Medical imaging. Proceedings of SPIE. Vol. 7965; 2011. p. 1–7 (79651Y).Google Scholar
  30. 30.
    Tanaka R., Sanada S, Kobayashi T, Suzuki M, Matsui T, Hayashi N, Nanbu Y. Automated analysis for the respiratory kinetics with the screening dynamic chest radiography using a flat-panel detector system. In: Computer Assisted Radiology and Surgery. Proceeding; 2003. 179–186.Google Scholar
  31. 31.
    Tanaka R, Sanada S, Kobayashi T, Suzuki M, Matsui T, Inoue H. Breathing chest radiography using a dynamic flat-panel detector (FPD) with computer analysis for a screening examination. Med Phys. 2004;31:2254–62.CrossRefPubMedGoogle Scholar
  32. 32.
    Tanaka R, Sanada S, Kobayashi T, Suzuki M, Matsui T, Matsui O. Computerized methods for determining respiratory phase on dynamic chest radiographs obtained by a dynamic flat-panel detector (FPD) system. J Digit Imaging. 2006;19:41–51.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Fraser RS, Muller NL, Colman NC, Pare PD. Fraser and Pare’s Diagnosis of Diseases of the Chest. 4th ed. W.B. Saunders Company: Philadelphia, London, New York, St. Louise, Sydney, and Toronto; 1999.Google Scholar
  34. 34.
    West JB. Ventilation—how gas gets to the alveoli. Respiratory physiology: the essentials. 3rd ed. Philadelphia: Lippincott Williams & Wilkinss; 2000. p. 11–9.Google Scholar
  35. 35.
    Squire LF, Novelline RA. Fundamentals of Radiology, 4th ed. Harvard University: Cambridge, Massachusetts, and London; 1988.Google Scholar
  36. 36.
    Hansen JT, Koeppen BM. Cardiovascular Physiology, In: Netter’s Atlas of Human Physiology (Netter Basic Science). Icon Learning Systems: Teterboro, New Jersey; 2002.Google Scholar
  37. 37.
    Tanaka R, Sanada S, Okazaki N, Kobayashi T, Suzuki M, Matsui T, Matsui O. Detectability of regional lung ventilation with flat-panel detector-based dynamic radiography. J. Digit. Imag. 2008;21:109–20.CrossRefGoogle Scholar
  38. 38.
    Heyneman LE. The chest radiograph: Reflections on cardiac physiology. In: Radiological Society of North America. Scientific Assembly and Annual Meeting Program; 2005, p. 145.Google Scholar
  39. 39.
    Goodman LR. Felson’s principles of chest roentgenology, a programmed text. London, Toronto, Philadelphia: W B Saunders Co; 2006.Google Scholar
  40. 40.
    Turner AF, Lau FY, Jacobson G. A method for the estimation of pulmonary venous and arterial pressures from the routine chest roentgenogram. Am J Roentgenol Radium Ther Nucl Med. 1972;116:97–106.CrossRefPubMedGoogle Scholar
  41. 41.
    Chang CH. The normal roentgenographic measurement of the right descending pulmonary artery in 1085 cases. Am J Roentgenol Radium Ther Nucl Med. 1962;87:929–35.PubMedGoogle Scholar
  42. 42.
    Pistolesi M, Milne EN, Miniati M, Giuntini C. The vascular pedicle of the heart and the vena azygos. Part II: Acquired heart disease. Radiology. 1984;152:9–17.CrossRefPubMedGoogle Scholar
  43. 43.
    Kawashima H, Tanaka R, Matsubara K, et al. Temporal-spatial characteristic evaluation in a dynamic flat-panel detector system. In: The international society for optical engineering. Medical imaging. Proceedings of SPIE. Vol. 7622; 2010. p. 1–8 (76224T).Google Scholar
  44. 44.
    International basic safety standards for protection against ionizing radiation and for the safety of radiation sources. International atomic energy agency (IAEA): Vienna; 1996.Google Scholar
  45. 45.
    Xu XW, Doi K. Image feature analysis for computer-aided diagnosis: accurate determination of ribcage boundary in chest radiographs. Med Phys. 1995;22:617–26.CrossRefPubMedGoogle Scholar
  46. 46.
    Li L, Zheng Y, Kallergi M, Clark RA. Improved method for automatic identification of lung regions on chest radiographs. Acad Radiol. 2001;8:629–38.CrossRefPubMedGoogle Scholar
  47. 47.
    Katsuragawa S, Doi K, MacMahon H. Image feature analysis and computer-aided diagnosis in digital radiography: detection and characterization of interstitial lung disease in digital chest radiographs. Med Phys. 1988;15:311–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Katsuragawa S, Doi K, MacMahon H. Image feature analysis and computer-aided diagnosis in digital radiography: classification of normal and abnormal lungs with interstitial disease in chest images. Med Phys. 1989;16:38–44.CrossRefPubMedGoogle Scholar
  49. 49.
    Katsuragawa S, Doi K, Nakamori N, MacMahon H. Image feature analysis and computer-aided diagnosis in digital radiography: effect of digital parameters on the accuracy of computerized analysis of interstitial disease in digital chest radiographs. Med Phys. 1990;17:72–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Ashizawa K, Ishida T, MacMahon H, Vyborny CJ, Katsuragawa S, Doi K. Artificial neural networks in chest radiology: application to the differential diagnosis of interstitial lung disease. Acad Radiol. 1999;6:2–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Ishida T, Katsuragawa S, Kobayashi T, MacMahon H, Doi K. Computerized analysis of interstitial disease in chest radiographs: improvement of geometric-pattern feature analysis. Med Phys. 1997;24:915–92.CrossRefPubMedGoogle Scholar
  52. 52.
    Nakamori N, Doi K, MacMahon H, Sasaki Y, Montner S. Effect of heart size parameters computed from digital chest radiographs on detection of cardiomegaly: potential usefulness for computer–aided diagnosis. Invest Radiol. 1991;26:546–50.CrossRefPubMedGoogle Scholar
  53. 53.
    Kano A, Doi K, MacMahon H, Hassell DD, Giger ML. Digital image subtraction of temporally sequential chest images for detection of interval change. Med Phys. 1994;21:453–61.CrossRefPubMedGoogle Scholar
  54. 54.
    Ishida T, Ashizawa K, Engelmann R, Katsuragawa S, MacMahon H, Doi K. Application of temporal subtraction for detection of interval changes on chest radiographs: improvement of subtraction images using automated initial image matching. J Digit Imaging. 1999;12:77–86.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Rank K, Unbehauen R. An adaptive recursive 2-D filter for removal of Gaussian noise in images. IEEE Trans Image Process. 1992;1:431–6.CrossRefPubMedGoogle Scholar
  56. 56.
    Hoffmann KR, Doi K, Chen SH, Chan HP. Automated tracking and computer reproduction of vessels in DSA images. Invest Radiol. 1990;25:1069–75.CrossRefPubMedGoogle Scholar
  57. 57.
    Chen QS, Weinhous MS, Deibel FC, Ciezki JP, Macklis RM. Fluoroscopic study of tumor motion due to breathing: facilitating precise radiation therapy for lung cancer patients. Med Phys. 2001;28:1850–6.CrossRefPubMedGoogle Scholar
  58. 58.
    Richter A, Wilbert J, Baier K, et al. Feasibility study for markerless tracking of lung tumors in stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2010;78:618–27.CrossRefPubMedGoogle Scholar
  59. 59.
    Tsuchiya Y, Kodera Y, Tanaka R, Sanada S. Quantitative kinetic analysis of lung nodules using the temporal subtraction technique in dynamic chest radiographies performed with a flat panel detector. J. Digit. Imag. 2009;2:126–35.CrossRefGoogle Scholar
  60. 60.
    Tanaka R, Sanada S, Oda M, Suzuki M, Sakuta K, Kawashima H, Iida H. “Circulation map” projected on functional chest radiography with a dynamic FPD. ECR Electron Poster Present. 2013;. doi: 10.1594/ecr2013/C-0279.Google Scholar
  61. 61.
    Suzuki K, Abe H, MacMahon H, Doi K. Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN). IEEE Trans Med Imaging. 2006;25:406–16.CrossRefPubMedGoogle Scholar
  62. 62.
    Knapp J, et.al. Feature Based Neural Network Regression for Feature Suppression, U.S. Patent Number, 8,204,292 B2; 2012.Google Scholar
  63. 63.
    Tanaka R, Sanada S, Sakuta K, Kawashima H. Improved accuracy of markerless motion tracking on bone suppression images: preliminary study for image-guided radiation therapy (IGRT). Phys Med Biol. 2015;60:N209–18.CrossRefPubMedGoogle Scholar
  64. 64.
    Tanaka R, Sanada S, Sakuta K, Kawashima H, Kishitani Y. Low-dose dynamic chest radiography combined with bone suppression technique. ECR Electron Poster Present. 2015;. doi: 10.1594/ecr2015/C-0239.Google Scholar
  65. 65.
    Tanaka R, Sanada S, Sakuta K, Kawashima H. Quantitative analysis of rib kinematics based on dynamic chest bone images: preliminary results. J Med Imaging. 2015;2:024002.CrossRefGoogle Scholar

Copyright information

© Japanese Society of Radiological Technology and Japan Society of Medical Physics 2016

Authors and Affiliations

  1. 1.Department of Radiological Technology, School of Health Sciences, College of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan

Personalised recommendations