Radiological Physics and Technology

, Volume 4, Issue 2, pp 203–215 | Cite as

A convolution/superposition method using primary and scatter dose kernels formed for energy bins of X-ray spectra reconstructed as a function of off-axis distance: a theoretical study on 10-MV X-ray dose calculations in thorax-like phantoms

  • Akira Iwasaki
  • Shigenobu Kimura
  • Kohji Sutoh
  • Kazuo Kamimura
  • Makoto Sasamori
  • Fumio Komai
  • Morio Seino
  • Singo Terashima
  • Mamoru Kubota
  • Junichi Hirota
  • Yoichiro Hosokawa


A convolution/superposition method is proposed for use with primary and scatter dose kernels formed for energy bins of X-ray spectra reconstructed as a function of off-axis distance. It should be noted that the number of energy bins is usually about ten, and that the reconstructed X-ray spectra can reasonably be applied to media with a wide range of effective Z numbers, ranging from water to lead. The study was carried out for 10-MV X-ray doses in water and thorax-like phantoms with the use of open-jaw-collimated fields. The dose calculations were made separately for primary, scatter, and electron contamination dose components, for which we used two extended radiation sources: one was on the X-ray target and the other on the flattening filter. To calculate the in-air beam intensities at points on the isocenter plane for a given jaw-collimated field, we introduced an in-air output factor (OPFin-air) expressed as the product of the off-center jaw-collimator scatter factor (off-center Sc), the source off-center ratio factor (OCRsource), and the jaw-collimator radiation reflection factor (RRFc). For more accurate dose calculations, we introduce an electron spread fluctuation factor (Ffwd) to take into account the angular and spatial spread fluctuation for electrons traveling through different media.


Convolution/superposition method Components method Thorax phantoms X-ray spectra Dose kernels Collimator scatter factor 


  1. 1.
    Khan FM. The physics of radiation therapy, 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2003.Google Scholar
  2. 2.
    Mohan R, Antolak J. Monte Carlo techniques should replace analytical methods for estimating dose distributions in radiotherapy treatment planning. Med Phys. 2001;28:123–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Ahnesjö A, Aspradakis MM. Dose calculations for external photon beams in radiotherapy. Phys Med Biol. 1999;44:R99–155.PubMedCrossRefGoogle Scholar
  4. 4.
    Mackie TR, Scrimger JW, Battista JJ. A convolution method of calculating dose for 15-MV x rays. Med Phys. 1985;12:188–96.PubMedCrossRefGoogle Scholar
  5. 5.
    Boyer AL, Mok EC. A photon dose distribution model employing convolution calculations. Med Phys. 1985;12:169–77.PubMedCrossRefGoogle Scholar
  6. 6.
    Metcalfe PE, Hoban PW, Murray DC, Round WH. Beam hardening of 10 MV radiotherapy X-rays: analysis using a convolution/superposition method. Phys Med Biol. 1990;35:1533–49.PubMedCrossRefGoogle Scholar
  7. 7.
    Papanikolaou N, Mackie TR, Meger-Wells C, Gehring M, Reckwerdt P. Investigation of the convolution method for polyenergetic spectra. Med Phys. 1993;20:1327–36.PubMedCrossRefGoogle Scholar
  8. 8.
    Hoban PW, Murray DC, Round WH. Photon beam convolution using polyenergetic energy deposition kernels. Phys Med Biol. 1994;39:669–85.PubMedCrossRefGoogle Scholar
  9. 9.
    Hoban PW. Accounting for the variation in collision kerma-to-terma ratio in polyenergetic photon beam convolution. Med Phys. 1995;22:2035–44.PubMedCrossRefGoogle Scholar
  10. 10.
    Liu HH, Mackie TR, McCullough EC. Correcting kernel tilting and hardening in convolution/superposition dose calculations for clinical divergent and polychromatic photon beams. Med Phys. 1997;24:1729–41.PubMedCrossRefGoogle Scholar
  11. 11.
    Liu HH, Mackie TR, McCullough EC. A dual source photon beam model used in convolution/superposition dose calculations for clinical megavoltage x-ray beams. Med Phys. 1997;24:1960–74.PubMedCrossRefGoogle Scholar
  12. 12.
    Charland PM, Chetty IJ, Paniak LD, Bednarz BP, Fraass BA. Enhanced spectral discrimination through the exploitation of interface effects in photon dose data. Med Phys. 2004;31:264–76.PubMedCrossRefGoogle Scholar
  13. 13.
    Ahnesjö A, Andreo P, Brahme A. Calculation and application of point spread functions for treatment planning with high energy photon beams. Acta Oncol. 1987;26:49–56.PubMedCrossRefGoogle Scholar
  14. 14.
    Boyer AL, Zhu Y, Wang L, Francois P. Fast Fourier transform convolution calculations of x-ray isodose distributions in homogeneous media. Med Phys. 1989;16:248–53.PubMedCrossRefGoogle Scholar
  15. 15.
    Naqvi SA, Earl MA, Shepard DM. Convolution/superposition using the Monte Carlo method. Phys Med Biol. 2003;48:2101–21.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhu Y, Van Dyk J. Accuracy requirements of the primary x-ray spectrum in dose calculations using FFT convolution techniques. Med Phys. 1995;22:421–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Scholz C, Schulze C, Oelfke U, Bortfeld T. Development and clinical application of a fast superposition algorithm in radiation therapy. Radiother Oncol. 2003;69:79–90.PubMedCrossRefGoogle Scholar
  18. 18.
    Iwasaki A, Kubota M, Hirota J, Fujimori A, Suzaki K, Aoki M, Abe Y. Characteristic features of a high-energy x-ray spectra estimation method based on the Waggener iterative perturbation principle. Med Phys. 2006;33:4056–63.PubMedCrossRefGoogle Scholar
  19. 19.
    Iwasaki A. 10 MV X-ray central-axis dose calculation in thorax-like phantoms (water/cork) using the differential primary and scatter method. Radiat Phys Chem. 2002;65:11–26.CrossRefGoogle Scholar
  20. 20.
    Bagne F. A method for calculating megavoltage x-ray dose and dose parameters. Med Phys. 1980;7:664–71.PubMedCrossRefGoogle Scholar
  21. 21.
    Ahnesjö A, Andreo P. Determination of effective bremsstrahlung spectra and electron contamination for photon dose calculations. Phys Med Biol. 1989;34:1451–64.PubMedCrossRefGoogle Scholar
  22. 22.
    Medina AL, Teijeiro A, Garcia J, Esperon J, Terron JA, Ruiz DP, Carrion MC. Characterization of electron contamination in megavoltage photon beams. Med Phys. 2005;32:1281–92.CrossRefGoogle Scholar
  23. 23.
    Kimura S, Sutoh K, Kamimura K, Iwasaki A, Sasamori M, Komai F, Seino M, Terashima S, Kubota M, Hirota J, Hosokawa Y. A convolution/superposition method using primary and scatter dose kernels formed for energy bins of X-ray spectra reconstructed as a function of off-axis distance: comparison of calculated and measured 10-MV X-ray doses in thorax-like phantoms. Radiol Phys Technol. 2011. doi:10.1007/s12194-011-0124-3.
  24. 24.
    O’Connor JE. The variation of scattered x-rays with density in an irradiated body. Phys Med Biol. 1957;1:352–69.PubMedCrossRefGoogle Scholar
  25. 25.
    Iwasaki A. Comments on the primary and scatter dose-spread kernels used for convolution methods. Radiat Phys Chem. 2002;65:595–7.CrossRefGoogle Scholar
  26. 26.
    Sasamori M, Iwasaki A, Saitoh H, Kimura S, Seino M, Komai F. Monte Carlo simulation for constructing dose kernels based on the differential dose concept. In: Proceedings of the 15th international conference on the use of computers in radiation therapy, vol II;2007. p. 137–41.Google Scholar
  27. 27.
    Iwasaki A, Ishito T. The differential scatter-air ratio and differential backscatter factor method combined with the density scaling theorem. Med Phys. 1984;11:755–63.PubMedCrossRefGoogle Scholar
  28. 28.
    Khan FM, Sewchand W, Lee J, Williamson JF. Revision of tissue-maximum ratio and scatter-maximum ratio concepts for cobalt 60 and higher energy x-ray beams. Med Phys. 1980;7:230–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhu TC, Ahnesjö A, Lam KL, Li XA, Ma C-MC, Palta JR, Sharpe MB, Thomadsen B, Tailor RC. Report of AAPM Therapy Physics Committee Task Group 74: in-air output ratio, S c, for megavoltage photon beams. Med Phys. 2009;36:5261–91.PubMedCrossRefGoogle Scholar
  30. 30.
    Woo MK, Cunningham JR. The validity of the density scaling method in primary electron transport for photon and electron beams. Med Phys. 1990;17:187–94.PubMedCrossRefGoogle Scholar
  31. 31.
    Podgorsak EB. Basic radiation physics. In: Podgorsak EB, editor. Radiation oncology physics: a handbook for teachers and students. Vienna: International Atomic Energy Agency; 2005.Google Scholar
  32. 32.
    Zhu TC, Bjärngard BE, Xiao Y, Yang CJ. Modeling the output ratio in air for megavoltage photon beams. Med Phys. 2001;28:925–37.PubMedCrossRefGoogle Scholar
  33. 33.
    Zhu TC, Bjärngard BE. Head scatter off-axis for megavoltage x rays. Med Phys. 2003;30:533–43.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhu TC, Bjärngard BE, Xiao Y, Bieda M. Output ratio in air for MLC shaped irregular fields. Med Phys. 2004;31:2480–90.PubMedCrossRefGoogle Scholar
  35. 35.
    Kim S, Zhu TC, Palta JR. An equivalent square field formula for determining head scatter factors of rectangular fields. Med Phys. 1997;24:1770–4.PubMedCrossRefGoogle Scholar
  36. 36.
    van Gasteren JJM, Heukelom S, van Kleffens HJ, van der Laarse R, Venselaar JLM, Westermann CF. The determination of phantom and collimator scatter components of the output of megavoltage photon beams: measurement of the collimator scatter part with a beam-coaxial narrow cylindrical phantom. Radiother Oncol. 1991;20:250–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Munro P, Rawlinson JA, Fenster A. Therapy imaging: source sizes of radiotherapy beams. Med Phys. 1988;15:517–24.PubMedCrossRefGoogle Scholar
  38. 38.
    Jaffray DA, Battista JJ, Fenster A, Munro P. X-ray sources of medical linear accelerators: focal and extra-focal radiation. Med Phys. 1993;20:1417–27.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhu TC, Bjärngard BE, Shackford H. X-ray source and the output factor. Med Phys. 1995;22:793–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Zhu TC, Bjärngard BE. The head-scatter factor for small field sizes. Med Phys. 1994;21:65–8.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Society of Radiological Technology and Japan Society of Medical Physics 2011

Authors and Affiliations

  • Akira Iwasaki
    • 1
  • Shigenobu Kimura
    • 2
  • Kohji Sutoh
    • 2
  • Kazuo Kamimura
    • 2
  • Makoto Sasamori
    • 3
  • Fumio Komai
    • 4
  • Morio Seino
    • 5
  • Singo Terashima
    • 6
  • Mamoru Kubota
    • 6
  • Junichi Hirota
    • 6
  • Yoichiro Hosokawa
    • 6
  1. 1.HirosakiJapan
  2. 2.Department of RadiologyAomori City HospitalAomoriJapan
  3. 3.Department of RadiologyMisawa City HospitalMisawaJapan
  4. 4.Department of RadiologyAomori Prefectural HospitalAomoriJapan
  5. 5.Department of RadiologyHirosaki University HospitalHirosakiJapan
  6. 6.Graduate School of Health SciencesHirosaki UniversityHirosakiJapan

Personalised recommendations