Radiological Physics and Technology

, Volume 3, Issue 2, pp 127–135 | Cite as

Demonstration of iodine K-edge imaging by use of an energy-discrimination X-ray computed tomography system with a cadmium telluride detector

  • Abulajiang Abudurexiti
  • Masashi Kameda
  • Eiichi Sato
  • Purkhet Abderyim
  • Toshiyuki Enomoto
  • Manabu Watanabe
  • Keitaro Hitomi
  • Etsuro Tanaka
  • Hidezo Mori
  • Toshiaki Kawai
  • Kiyomi Takahashi
  • Shigehiro Sato
  • Akira Ogawa
  • Jun Onagawa
Article

Abstract

An energy-discrimination K-edge X-ray computed tomography (CT) system is useful for increasing the contrast resolution of a target region by utilizing contrast media. The CT system has a cadmium telluride (CdTe) detector, and a projection curve is obtained by linear scanning with use of the CdTe detector in conjunction with an X-stage. An object is rotated by a rotation step angle with use of a turntable between the linear scans. Thus, CT is carried out by repetition of the linear scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced with use of charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. For performing energy discrimination, a low-dose-rate X-ray generator for photon counting was developed; the maximum tube voltage and the minimum tube current were 110 kV and 1.0 μA, respectively. In energy-discrimination CT, the tube voltage and the current were 60 kV and 20.0 μA, respectively, and the X-ray intensity was 0.735 μGy/s at 1.0 m from the source and with a tube voltage of 60 kV. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selection of photons with energies just beyond the iodine K-edge energy of 33.2 keV.

Keywords

X-ray CT CdTe detector Photon counting Energy discrimination Iodine K-edge CT 

References

  1. 1.
    Sato E, Sagae M, Tanaka E, Hayasi Y, Germer R, Mori H, et al. Quasi-monochromatic flash X-ray generator utilizing a disk-cathode molybdenum tube. Jpn J Appl Phys. 2004;43:7324–8.CrossRefGoogle Scholar
  2. 2.
    Sato E, Tanaka E, Mori H, Kawai T, Inoue T, Ogawa A, et al. Characteristic X-ray generator utilizing angle dependence of bremsstrahlung X-ray distribution. Jpn J Appl Phys. 2006;45:2845–9.CrossRefGoogle Scholar
  3. 3.
    Germer R. X-ray flash techniques. J Phys E Sci Instrum. 1979;12:336–50.CrossRefGoogle Scholar
  4. 4.
    Shikoda A, Sato E, Sagae M, Oizumi T, Tamakawa Y, Yanagisawa T. Repetitive flash X-ray generator having a high-durability diode driven by a two-cable-type line pulser. Rev Sci Instrum. 1994;65:850–6.CrossRefGoogle Scholar
  5. 5.
    Takahashi K, Sato E, Sagae M, Oizumi T, Tamakawa Y, Yanagisawa T. Fundamental study on a long-duration flash x-ray generator with a surface-discharge triode. Jpn J Appl Phys. 1994;33:4146–51.CrossRefGoogle Scholar
  6. 6.
    Sato E, Tanaka E, Mori H, Kawai T, Sato S, Takayama K. Clean monochromatic X-ray irradiation from weakly ionized linear copper plasma. Opt Eng. 2005;44:049002-1–6.Google Scholar
  7. 7.
    Sato E, Hayasi Y, Germer R, Tanaka E, Mori H, Kawai T, et al. X-ray spectra from weakly ionized linear copper plasma. Jpn J Appl Phys. 2006;45:5301–6.CrossRefGoogle Scholar
  8. 8.
    Sato E, Obara H, Enomoto T, Tanaka E, Mori H, Kawai T, et al. X-ray spectra from a brass-target plasma triode. Jpn J Med Phys. 2008;27:163–71.Google Scholar
  9. 9.
    Sato E, Hayasi Y, Kimura K, Tanaka E, Mori H, Kawai, et al. Enhanced K-edge angiography utilizing tantalum plasma X-ray generator in conjunction with gadolium-based contrast media. Jpn J Appl Phys 2005;44:8716–21.Google Scholar
  10. 10.
    Sato E, Hayasi Y, Tanaka E, Mori H, Kawai T, Inoue T, et al. K-edge angiography utilizing a tungsten plasma X-ray generator in conjunction with gadolinium-based contrast media. Rad Phys Chem. 2006;75:1841–9.CrossRefGoogle Scholar
  11. 11.
    Thompson AC, Zeman HD, Brown GS, Morrison J, Reiser P, Padmanabahn V, et al. First operation of the medical research facility at the NSLS for coronary angiography. Rev Sci Instrum. 1992;63:625–8.CrossRefGoogle Scholar
  12. 12.
    Mori H, Hyodo K, Tanaka E, Mohammed MU, Yamakawa A, Shinozaki Y, et al. Small-vessel radiography in situ with monochromatic synchrotoron radiation. Radiology. 1996;201:173–7.Google Scholar
  13. 13.
    Hyodo K, Ando M, Oku Y, Yamamoto S, Takeda T, Itai Y, et al. Development of a two-dimensional imaging system for clinical applications of intravenous coronary angiography using intense synchrotron radiation produced by a multipole wiggler. J Synchrotron Radiat. 1998;5:1123–6.CrossRefGoogle Scholar
  14. 14.
    Sato E, Tanaka E, Mori H, Kawai T, Ichimaru T, Sato S, et al. Demonstration of enhanced K-edge angiography using a cerium target x-ray generator. Med Phys. 2004;31:3017–21.CrossRefGoogle Scholar
  15. 15.
    Sato E, Tanaka E, Mori H, Kawai T, Inoue T, Ogawa A, et al. Variations in cerium X-ray spectra and enhanced K-edge angiography. Jpn J Appl Phys. 2005;44:8204–9.CrossRefGoogle Scholar
  16. 16.
    Matsukiyo H, Watanabe M, Sato E, Osawa A, Enomoto T, Nagao J, et al. X-ray fluorescence camera for imaging of iodine media in vivo. Radiol Phys Technol. 2009;2:46–53.CrossRefGoogle Scholar
  17. 17.
    Sato E, Purkhet A, Matsukiyo H, Osawa A, Enomoto T, Watanabe M, et al. Energy discriminating X-ray camera utilizing a cadmium telluride detector. Opt Eng 2010; 48 (in press).Google Scholar
  18. 18.
    Nakashima T, Mori H, Neo Y, Mimura H, Aoki T. Application of CdTe photon-counting X-ray imager to material discriminated X-ray CT. Proc SPIE. 2007;6706:67060C-1–9.Google Scholar
  19. 19.
    Hernandez RJ, Strouse PJ, Londy FJ, Wakefield TW. Gadolinium-enhanced MR angiography (Gd-MRA) of thoracic vasculature in an animal model using double-dose gadolinium and quiet breathing. Pediatr Radiol. 2001;31:589–93.CrossRefGoogle Scholar

Copyright information

© Japanese Society of Radiological Technology and Japan Society of Medical Physics 2010

Authors and Affiliations

  • Abulajiang Abudurexiti
    • 1
  • Masashi Kameda
    • 1
  • Eiichi Sato
    • 2
  • Purkhet Abderyim
    • 2
  • Toshiyuki Enomoto
    • 3
  • Manabu Watanabe
    • 3
  • Keitaro Hitomi
    • 4
  • Etsuro Tanaka
    • 5
  • Hidezo Mori
    • 6
  • Toshiaki Kawai
    • 7
  • Kiyomi Takahashi
    • 8
  • Shigehiro Sato
    • 8
  • Akira Ogawa
    • 9
  • Jun Onagawa
    • 10
  1. 1.Faculty of Software and Information ScienceIwate Prefectural UniversityTakizawaJapan
  2. 2.Department of PhysicsIwate Medical UniversityYahabaJapan
  3. 3.The 3rd Department of SurgeryToho University School of MedicineTokyoJapan
  4. 4.Department of Electronics and Intelligent SystemsTohoku Institute of TechnologySendaiJapan
  5. 5.Department of Nutritional Science, Faculty of Applied Bio-scienceTokyo University of AgricultureTokyoJapan
  6. 6.Department of PhysiologyTokai University School of MedicineIseharaJapan
  7. 7.Organization for Hamamatsu TechnopolisHeadquarters of Hamamatsu Knowledge ClusterHamamatsuJapan
  8. 8.Department of Microbiology, School of MedicineIwate Medical UniversityMoriokaJapan
  9. 9.Department of Neurosurgery, School of MedicineIwate Medical UniversityMoriokaJapan
  10. 10.Department of Electronics, Faculty of EngineeringTohoku Gakuin UniversityMiyagiJapan

Personalised recommendations