Radiological Physics and Technology

, Volume 2, Issue 1, pp 77–86 | Cite as

Embossed radiography utilizing energy subtraction

  • Akihiro Osawa
  • Manabu Watanabe
  • Eiichi Sato
  • Hiroshi Matsukiyo
  • Toshiyuki Enomoto
  • Jiro Nagao
  • Purkhet Abderyim
  • Katsuo Aizawa
  • Etsuro Tanaka
  • Hidezo Mori
  • Toshiaki Kawai
  • Shigeru Ehara
  • Shigehiro Sato
  • Akira Ogawa
  • Jun Onagawa
Article

Abstract

Currently, it is difficult to carry out refraction-contrast radiography by using a conventional X-ray generator. Thus, we developed an embossed radiography system utilizing dual-energy subtraction for decreasing the absorption contrast in unnecessary regions, and the contrast resolution of a target region was increased by use of image-shifting subtraction and a linear-contrast system in a flat panel detector (FPD). The X-ray generator had a 100-μm-focus tube. Energy subtraction was performed at tube voltages of 45 and 65 kV, a tube current of 0.50 mA, and an X-ray exposure time of 5.0 s. A 1.0-mm-thick aluminum filter was used for absorbing low-photon-energy bremsstrahlung X-rays. Embossed radiography was achieved with cohesion imaging by use of the FPD with pixel sizes of 48 × 48 μm, and the shifting dimension of an object in the horizontal direction ranged from 100 to 200 μm. At a shifting distance of 100 μm, the spatial resolutions in the horizontal and vertical directions measured with a lead test chart were both 83 μm. In embossed radiography of non-living animals, we obtained high-contrast embossed images of fine bones, gadolinium oxide particles in the kidney, and coronary arteries approximately 100 μm in diameter.

Keywords

Embossed radiography Digital subtraction Energy subtraction Contrast resolution Polychromatic X-rays 

References

  1. 1.
    Thompson AC, Zeman HD, Brown GS, Morrison J, Reiser P, Padmanabahn V, et al. First operation of the medical research facility at the NSLS for coronary angiography. Rev Sci Instrum. 1992;63:625–8.CrossRefGoogle Scholar
  2. 2.
    Mori H, Hyodo K, Tanaka E, Mohammed MU, Yamakawa A, Shinozaki Y, et al. Small-vessel radiography in situ with monochromatic synchrotoron radiation. Radiology. 1996;201:173–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Hyodo K, Ando M, Oku Y, Yamamoto S, Takeda T, Itai Y, et al. Development of a two-dimensional imaging system for clinical applications of intravenous coronary angiography using intense synchrotron radiation produced by a multipole wiggler. J Synchrotron Radiat. 1998;5:1123–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Momose A, Takeda T, Itai Y, Hirano K. Phase-contrast X-ray computed tomography for observing biological soft tissues. Nat Med. 1996;2:473–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Ando M, Maksimenko A, Sugiyama H, Pattanasiriwisawa W, Hyodo K, Uyama C. Simple X-ray dark- and bright-field imaging using achromatic Laue optics. Jpn J Appl Phys. 2002;41:L1016–8.CrossRefGoogle Scholar
  6. 6.
    Ando M, Sugiyama H, Ichihara S, Endo T, Bando H, Yamasaki K, et al. Sharper image of breast cancer cells and stroma in dense breast using thinner angular filter under X-ray dark-field imaging. Jpn J Appl Phys. 2006;45:L740–3.CrossRefGoogle Scholar
  7. 7.
    Iida S, Kawado S, Maehara T, Chikaura Y, Suzuki Y, Kajiwara K, et al. Plane-wave X-ray topography of grown-in microdefects in silicon crystals. J Phys D Appl Phys. 2005;38:A23–7.CrossRefGoogle Scholar
  8. 8.
    Chen Y, Dhanaraj G, Dudley M, Sanchez EK, MacMillan MF. Sense determination of micropipes via grazing-incidence synchrotron white beam X-ray topography in 4H silicon carbide. Appl Phys Lett. 2007;91:071917.CrossRefGoogle Scholar
  9. 9.
    Sato E, Sagae M, Tanaka E, Hayasi Y, Germer R, Mori H, et al. Quasi-monochromatic flash X-ray generator utilizing a disk-cathode molybdenum tube. Jpn J Appl Phys. 2004;43:7324–8.CrossRefGoogle Scholar
  10. 10.
    Sato E, Tanaka E, Mori H, Kawai T, Sato S, Takayama K. Clean monochromatic X-ray irradiation from weakly ionized linear copper plasma. Opt Eng. 2005;44:049002–16.CrossRefGoogle Scholar
  11. 11.
    Sato E, Hayasi Y, Germer R, Tanaka E, Mori H, Kawai T, et al. X-ray spectra from weakly ionized linear copper plasma. Jpn J Appl Phys. 2006;45:5301–6.CrossRefGoogle Scholar
  12. 12.
    Sato E, Tanaka E, Mori H, Kawai T, Inoue T, Ogawa A, et al. Characteristic X-ray generator utilizing angle dependence of bremsstrahlung X-ray distribution. Jpn J Appl Phys. 2006;45:2845–9.CrossRefGoogle Scholar
  13. 13.
    Sato E, Tanaka E, Mori H, Kawai T, Ichimaru T, Sato S, et al. Demonstration of enhanced K-edge angiography using a cerium target X-ray generator. Med Phys. 2004;31:3017–21.CrossRefPubMedGoogle Scholar
  14. 14.
    Sato E, Tanaka E, Mori H, Kawai T, Inoue T, Ogawa A, et al. Variations in cerium X-ray spectra and enhanced K-edge angiography. Jpn J Appl Phys. 2005;44:8204–9.CrossRefGoogle Scholar
  15. 15.
    Wilkins SW, Gureyev TE, Gao D, Pogany A, Stevenson AW. Phase-contrast imaging using polychromatic hard X-rays. Nature. 1996;384:335–8.CrossRefGoogle Scholar
  16. 16.
    Bornefalk H, Lewin J, Danielsson M, Lundqvist M. Single-shot dual-energy subtraction mammography with electronic spectrum splitting: feasibility. Euro J Radiol. 2006;60:275–8.CrossRefGoogle Scholar
  17. 17.
    Kido S, Kuriyama K, Hosomi N, Inoue E, Kuroda C, Horai T. Low-cost soft-copy display accuracy in the detection of pulmonary nodules by single-exposure dual-energy subtraction: comparison with hard-copy viewing. J Digit Imag. 2000;13:33–7.CrossRefGoogle Scholar
  18. 18.
    Osawa A, Sato E, Matsukiyo H, Enomoto T, Watanabe M, Nagao J, et al. Novel embossed radiography system utilizing energy subtraction. Proc SPIE. 2008;7080:708003–16.CrossRefGoogle Scholar
  19. 19.
    Ishisaka A, Ohara H, Honda C. A new method of analyzing edge effect in phase contrast imaging with incoherent X-rays. Opt Rev. 2000;7:566–72.CrossRefGoogle Scholar
  20. 20.
    Enomoto T, Sato E, Sumiyama Y, Aizawa K, Watanabe M, Tanaka E, et al. Enhanced magnification angiography using 20-μm-focus tungsten tube. Jpn J Appl Phys. 2006;45:8005–9.CrossRefGoogle Scholar

Copyright information

© Japanese Society of Radiological Technology and Japan Society of Medical Physics 2008

Authors and Affiliations

  • Akihiro Osawa
    • 1
  • Manabu Watanabe
    • 1
  • Eiichi Sato
    • 2
  • Hiroshi Matsukiyo
    • 1
  • Toshiyuki Enomoto
    • 1
  • Jiro Nagao
    • 1
  • Purkhet Abderyim
    • 3
  • Katsuo Aizawa
    • 4
  • Etsuro Tanaka
    • 5
  • Hidezo Mori
    • 6
  • Toshiaki Kawai
    • 7
  • Shigeru Ehara
    • 8
  • Shigehiro Sato
    • 9
  • Akira Ogawa
    • 10
  • Jun Onagawa
    • 11
  1. 1.The 3rd Department of SurgeryToho University School of MedicineMeguro-kuJapan
  2. 2.Department of PhysicsIwate Medical UniversityYahabaJapan
  3. 3.Department of Computer and Information Sciences, Faculty of EngineeringIwate UniversityMoriokaJapan
  4. 4.Tokyo Medical UniversityShinjyuku-kuJapan
  5. 5.Department of Nutritional Science, Faculty of Applied Bio-scienceTokyo University of AgricultureSetagaya-kuJapan
  6. 6.Department of Cardiac PhysiologyNational Cardiovascular Center Research InstituteSuitaJapan
  7. 7.Electron Tube Division #2Hamamatsu Photonics K.KIwataJapan
  8. 8.Department of RadiologySchool of Medicine, Iwate Medical UniversityMoriokaJapan
  9. 9.Department of MicrobiologySchool of Medicine, Iwate Medical UniversityMoriokaJapan
  10. 10.Department of NeurosurgerySchool of Medicine, Iwate Medical UniversityMoriokaJapan
  11. 11.Department of Electronics, Faculty of EngineeringTohoku Gakuin UniversityTagajoJapan

Personalised recommendations