Radiological Physics and Technology

, Volume 2, Issue 1, pp 46–53 | Cite as

X-ray fluorescence camera for imaging of iodine media in vivo

  • Hiroshi Matsukiyo
  • Manabu Watanabe
  • Eiichi Sato
  • Akihiro Osawa
  • Toshiyuki Enomoto
  • Jiro Nagao
  • Purkhet Abderyim
  • Katsuo Aizawa
  • Etsuro Tanaka
  • Hidezo Mori
  • Toshiaki Kawai
  • Shigeru Ehara
  • Shigehiro Sato
  • Akira Ogawa
  • Jun Onagawa
Article

Abstract

X-ray fluorescence (XRF) analysis is useful for measuring density distributions of contrast media in vivo. An XRF camera was developed for carrying out mapping for iodine-based contrast media used in medical angiography. Objects are exposed by an X-ray beam from a cerium target. Cerium K-series X-rays are absorbed effectively by iodine media in objects, and iodine fluorescence is produced from the objects. Next, iodine Kα fluorescence is selected out by use of a 58-µm-thick stannum filter and is detected by a cadmium telluride (CdTe) detector. The Kα rays are discriminated out by a multichannel analyzer, and the number of photons is counted by a counter card. The objects are moved and scanned by an x–y stage in conjunction with a two-stage controller, and X-ray images obtained by iodine mapping are shown on a personal computer monitor. The scan pitch of the x and y axes was 2.5 mm, and the photon counting time per mapping point was 2.0 s. We carried out iodine mapping of non-living animals (phantoms), and iodine Kα fluorescence was produced from weakly remaining iodine elements in a rabbit skin cancer.

Keywords

X-ray photon counting Energy discrimination X-ray camera X-ray fluorescence CdTe detector DDS 

References

  1. 1.
    Takahashi Y, Yamamoto K, Ohshima K, Yukino K, Okamura FP. X-ray fluorescence analysis of rare-earth atoms in materials by use of ultrashort wavelength X-rays. Jpn J Appl Phys. 1998;37:L556–8.CrossRefGoogle Scholar
  2. 2.
    Liu Z, Kawamura J, Nagasono M, Maeda K, Kawai J. Determination of the structure of boron subphosphide by P Kβ X-ray fluorescence spectra. J Electron Spectrosc Relat Phenom. 2004;135:73–81.CrossRefGoogle Scholar
  3. 3.
    Sato E, Sagae M, Tanaka E, Hayasi Y, Germer R, Mori H, et al. Quasi-monochromatic flash X-ray generator utilizing a disk-cathode molybdenum tube. Jpn J Appl Phys. 2004;43:7324–8.CrossRefGoogle Scholar
  4. 4.
    Sato E, Tanaka E, Mori H, Kawai T, Inoue T, Ogawa A, et al. Characteristic X-ray generator utilizing angle dependence of bremsstrahlung X-ray distribution. Jpn J Appl Phys. 2006;45:2845–9.CrossRefGoogle Scholar
  5. 5.
    Sato E, Sugiyama H, Ando M, Tanaka E, Mori H, Kawai T, et al. Tunable narrow-photon-energy X-ray generator utilizing a tungsten-target tube. Rad Phys Chem. 2006;75:2008–13.CrossRefGoogle Scholar
  6. 6.
    Sato E, Tanaka E, Mori H, Kawai T, Inoue T, Ogawa A, et al. Tunable narrow-photon-energy x-ray source using a silicon single crystal. SPIE. 2007;6706:670610-1-7.Google Scholar
  7. 7.
    Sato E, Tanaka E, Mori H, Kawai T, Sato S, Takayama K. Clean monochromatic X-ray irradiation from weakly ionized linear copper plasma. Opt Eng. 2005;44: 049002-1-6.Google Scholar
  8. 8.
    Sato E, Hayasi Y, Germer R, Tanaka E, Mori H, Kawai T, et al. X-ray spectra from weakly ionized linear copper plasma. Jpn J Appl Phys. 2006;45:5301–6.CrossRefGoogle Scholar
  9. 9.
    Sato E, Hayasi Y, Kimura K, Tanaka E, Mori H, Kawai T, et al. Enhanced K-edge angiography utilizing tantalum plasma X-ray generator in conjunction with gadolium-based contrast media. Jpn J Appl Phys. 2005;44:8716–21.CrossRefGoogle Scholar
  10. 10.
    Sato E, Hayasi Y, Tanaka E, Mori H, Kawai T, Inoue T, et al. K-edge angiography utilizing a tungsten plasma X-ray generator in conjunction with gadolinium-based contrast media. Rad Phys Chem. 2006;75:1841–9.CrossRefGoogle Scholar
  11. 11.
    Sato Y, Sato E, Ehara S, Enomoto T, Tanaka E, Mori H, et al. Magnification K-edge angiography utilizing 100 μm-focus tungsten tube and gadolinium-based contrast media. Jpn J Appl Phys. 2008;47:4772–6.CrossRefGoogle Scholar
  12. 12.
    Sato E, Tanaka E, Mori H, Kawai T, Ichimaru T, Sato S, et al. Demonstration of enhanced K-edge angiography using a cerium target X-ray generator. Med Phys. 2004;31:3017–21.CrossRefPubMedGoogle Scholar
  13. 13.
    Sato E, Tanaka E, Mori H, Kawai T, Inoue T, Ogawa A, et al. Variations in cerium X-ray spectra and enhanced K-edge angiography. Jpn J Appl Phys. 2005;44:8204–9.CrossRefGoogle Scholar
  14. 14.
    Herzog C, Dogan S, Diebold T, Khan MF, Ackermann H, Schaller S, et al. Multi-detector row CT versus coronary angiography: preoperative evaluation before totally endoscopic coronary artery bypass grafting. Radiology. 2003;229:200–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Hernandez RJ, Strouse PJ, Londy FJ, Wakefield TW. Gadolinium-enhanced MR angiography (Gd-MRA) of thoracic vasculature in an animal model using double-dose gadolinium and quiet breathing. Pediatr Radiol. 2001;31:589–93.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Society of Radiological Technology and Japan Society of Medical Physics 2008

Authors and Affiliations

  • Hiroshi Matsukiyo
    • 1
  • Manabu Watanabe
    • 1
  • Eiichi Sato
    • 2
  • Akihiro Osawa
    • 1
  • Toshiyuki Enomoto
    • 1
  • Jiro Nagao
    • 1
  • Purkhet Abderyim
    • 3
  • Katsuo Aizawa
    • 4
  • Etsuro Tanaka
    • 5
  • Hidezo Mori
    • 6
  • Toshiaki Kawai
    • 7
  • Shigeru Ehara
    • 8
  • Shigehiro Sato
    • 9
  • Akira Ogawa
    • 10
  • Jun Onagawa
    • 11
  1. 1.The 3rd Department of SurgeryToho University School of MedicineMeguro-kuJapan
  2. 2.Department of PhysicsIwate Medical UniversityYahabaJapan
  3. 3.Department of Computer and Information Sciences, Faculty of EngineeringIwate UniversityMoriokaJapan
  4. 4.Tokyo Medical UniversityShinjyuku-kuJapan
  5. 5.Department of Nutritional Science, Faculty of Applied Bio-ScienceTokyo University of AgricultureSetagaya-kuJapan
  6. 6.Department of Cardiac PhysiologyNational Cardiovascular Center Research InstituteSuitaJapan
  7. 7.Electron Tube Division #2, Hamamatsu Photonics K.K.IwataJapan
  8. 8.Department of Radiology, School of MedicineIwate Medical UniversityMoriokaJapan
  9. 9.Department of Microbiology, School of MedicineIwate Medical UniversityMoriokaJapan
  10. 10.Department of Neurosurgery, School of MedicineIwate Medical UniversityMoriokaJapan
  11. 11.Department of Electronics, Faculty of EngineeringTohoku Gakuin UniversityTagajoJapan

Personalised recommendations