Radiological Physics and Technology

, Volume 1, Issue 2, pp 183–187 | Cite as

Dosimetric evaluation of nuclear interaction models in the Geant4 Monte Carlo simulation toolkit for carbon-ion radiotherapy

  • S. Kameoka
  • K. Amako
  • G. Iwai
  • K. Murakami
  • T. Sasaki
  • T. Toshito
  • T. Yamashita
  • T. Aso
  • A. Kimura
  • T. Kanai
  • N. Kanematsu
  • M. Komori
  • Y. Takei
  • S. Yonai
  • M. Tashiro
  • H. Koikegami
  • H. Tomita
  • T. Koi
Article

Abstract

We tested the ability of two separate nuclear reaction models, the binary cascade and JQMD (Jaeri version of Quantum Molecular Dynamics), to predict the dose distribution in carbon-ion radiotherapy. This was done by use of a realistic simulation of the experimental irradiation of a water target. Comparison with measurement shows that the binary cascade model does a good job reproducing the spread-out Bragg peak in depth-dose distributions in water irradiated with a 290 MeV/u (per nucleon) beam. However, it significantly overestimates the peak dose for a 400 MeV/u beam. JQMD underestimates the overall dose because of a tendency to break a nucleus into lower-Z fragments than does the binary cascade model. As far as shape of the dose distribution is concerned, JQMD shows fairly good agreement with measurement for both beam energies of 290 and 400 MeV/u, which favors JQMD over the binary cascade model for the calculation of the relative dose distribution in treatment planning.

Keywords

Carbon-ion radiotherapy Geant4 

References

  1. 1.
    Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, et al. GEANT4: a simulation toolkit. Nucl Instrum Meth. 2003;A506:250–303.CrossRefGoogle Scholar
  2. 2.
    Jiang H, Wang B, Xu XG, Suit HD, Paganetti H. Simulation of organ-specific patient effective dose due to secondary neutrons in proton radiation treatment. Phys Med Biol. 2005;50:4337–53.CrossRefPubMedGoogle Scholar
  3. 3.
    Jiang H, Paganetti H. Adaptation of GEANT4 to Monte Carlo dose calculations based on CT data. Med Phys. 2004;31:2811–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Paganetti H, Jiang H, Lee SY, Kooy HM. Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility. Med Phys. 2004;31:2107–18.CrossRefPubMedGoogle Scholar
  5. 5.
    Paganetti H. Four-dimensional Monte Carlo simulation of time-dependent geometries. Phys Med Biol. 2004;49:75–81.CrossRefGoogle Scholar
  6. 6.
    Paganetti H, Gottschalk B. Test of GEANT3 and GEANT4 nuclear models for 160 MeV protons stopping in CH2. Med Phys. 2003;30:1926–31.CrossRefPubMedGoogle Scholar
  7. 7.
    Pshenichnov I, Mishustin I, Greiner W. Neutrons from fragmentation of light nuclei in tissue-like media: a study with the GEANT4 toolkit. Phys Med Biol. 2005;50:5493–507.CrossRefPubMedGoogle Scholar
  8. 8.
    Yonai S, Kanematsu N, Komori M, Kanai T, Takei Y, Takahashi O, et al. Evaluation of beam wobbling methods for heavy-ion radiotherapy. Med Phys. 2008;35:927–38.CrossRefPubMedGoogle Scholar
  9. 9.
    Komori M, Furukawa T, Kanai T, Noda K. Optimization of spiral-wobbler system for heavy-ion radiotherapy. Jpn J Appl Phys. 2004;43:6463–7.CrossRefGoogle Scholar
  10. 10.
    Aso T, Kimura A, Tanaka S, Yoshida H, Kanematsu N, Sasaki T, et al. Verification of the dose distributions with GEANT4 simulation for proton therapy. IEEE Trans Nucl Sci. 2005;52:896–901.CrossRefGoogle Scholar
  11. 11.
    Folger G, Ivanchenko VN, Wellisch JP. The binary cascade. Eur Phys J A Hadrons Nucl. 2004;21:407–17.CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Niita K, Chiba S, Maruyama T, Maruyama T, Takada H, Fukahori T, et al. Analysis of the (N, x N′) reactions by quantum molecular dynamics plus statistical decay model. Phys Rev. 1995;C52:2620–35.Google Scholar
  14. 14.
    Iwase H, Niita K, Nakamura T. Development of general-purpose particle and heavy ion transport Monte Carlo code. J Nucl Sci Technol. 2002;39:1142–51.CrossRefGoogle Scholar
  15. 15.
    Koi T, Asai M, Wright DH, Niita K, Nara Y, Amako K, et al. Interfacing the JQMD and JAM nuclear reaction codes to Geant4. ECONF. 2003;C0303241:THMT005Google Scholar
  16. 16.
    Shen W, Wang B, Feng J, Zhan W, Zhu Y, Feng E. Total reaction cross section for heavy-ion collision and its relation to the neutron excess degree of freedom. Nucl Phys A. 1989;491:130–46.CrossRefGoogle Scholar
  17. 17.
    Pönisch F, Parodi K, Hasch BG, Enghardt W. The modelling of positron emitter production and PET imaging during carbon ion therapy. Phys Med Biol. 2004;49:5217–32.CrossRefPubMedGoogle Scholar
  18. 18.
    Inaniwa T, Kohno T, Tomitani T, Urakabe E, Sato S, Kanazawa M, et al. Experimental determination of particle range and dose distribution in thick targets through fragmentation reactions of stable heavy ions. Phys Med Biol. 2006;51:4129–46.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Society of Radiological Technology and Japan Society of Medical Physics 2008

Authors and Affiliations

  • S. Kameoka
    • 1
    • 2
  • K. Amako
    • 2
    • 3
  • G. Iwai
    • 2
    • 3
  • K. Murakami
    • 2
    • 3
  • T. Sasaki
    • 2
    • 3
  • T. Toshito
    • 2
  • T. Yamashita
    • 2
  • T. Aso
    • 2
    • 4
  • A. Kimura
    • 2
    • 5
  • T. Kanai
    • 2
    • 6
  • N. Kanematsu
    • 2
    • 6
  • M. Komori
    • 2
    • 6
  • Y. Takei
    • 6
  • S. Yonai
    • 6
  • M. Tashiro
    • 7
  • H. Koikegami
    • 8
  • H. Tomita
    • 8
  • T. Koi
    • 9
  1. 1.Particle Therapy DivisionResearch Center for Innovative Oncology, National Cancer Center EastKashiwaJapan
  2. 2.Japan Science and Technology Agency (JST), CRESTTokyoJapan
  3. 3.High Energy Accelerator Research Organization (KEK)TsukubaJapan
  4. 4.Toyama National College of Maritime TechnologyImizu-shiJapan
  5. 5.Department of Electrical and Electronic EngineeringAshikaga Institute of TechnologyAshikagaJapan
  6. 6.National Institute of Radiological SciencesChiba-shiJapan
  7. 7.Research Center for Heavy Ion MedicineGunma UniversityMaebashiJapan
  8. 8.Ishikawa-harima Heavy Industries (IHI)TokyoJapan
  9. 9.Stanford Linear Accelerator CenterStanford UniversityStanfordUSA

Personalised recommendations