Radiological Physics and Technology

, Volume 1, Issue 1, pp 75–82 | Cite as

Performance evaluation for 120 four-layer DOI block detectors of the jPET-D4

  • Naoko Inadama
  • Hideo Murayama
  • Yusuke Ono
  • Tomoaki Tsuda
  • Manabu Hamamoto
  • Taiga Yamaya
  • Eiji Yoshida
  • Kengo Shibuya
  • Fumihiko Nishikido
  • Kei Takahashi
  • Hideyuki Kawai
Article

Abstract

The jPET-D4 is a brain positron emission tomography (PET) scanner that we have developed to meet user demands for high sensitivity and high spatial resolution. For this scanner, we developed a four-layer depth-of-interaction (DOI) detector. The four-layer DOI detector is a key component for the jPET-D4, its performance has great influence on the overall system performance. Previously, we reported the original technique for encoding four-layer DOI. Here, we introduce the final design of the jPET-D4 detector and present the results of an investigation on uniformity in performance of the detector. The performance evaluation was done over the 120 DOI crystal blocks for the detectors, which are to be assembled into the jPET-D4 scanner. We also introduce the crystal assembly method, which is simple enough, even though each DOI crystal block is composed of 1,024 crystal elements. The jPET-D4 detector consists of four layers of 16 × 16 Gd2SiO5 (GSO) crystals and a 256-channel flat-panel position-sensitive photomultiplier tube (256ch FP-PMT). To identify scintillated crystals in the four-layer DOI detector, we use pulse shape discrimination and position discrimination on the two-dimensional (2D) position histogram. For pulse shape discrimination, two kinds of GSO crystals that show different scintillation decay time constants are used in the upper two and lower two layers, respectively. Proper reflector arrangement in the crystal block then allows the scintillated crystals to be identified in these two-layer groupings with two 2D position histograms. We produced the 120 DOI crystal blocks for the jPET-D4 system, and measured their characteristics such as the accuracy of pulse shape discrimination, energy resolution, and the pulse height of the full energy peak. The results show a satisfactory and uniform performance of the four-layer DOI crystal blocks; for example, misidentification rate in each GSO layer is <5% based on pulse shape discrimination, the averaged energy resolutions for the central four crystals of the first (farthest from the FP-PMT), second, third, and 4th layers are 15.7 ± 1.0, 15.8 ± 0.6, 17.7 ± 1.2, and 17.3 ± 1.4%, respectively, and variation in pulse height of the full energy peak among the four layers is <5% on average.

Keywords

Nuclear medicine PET Scintillation detector DOI Depth of interaction Instrumentation 

References

  1. 1.
    Yamamoto S, Ishibashi H. A GSO depth of interaction detector for PET. IEEE Trans Nucl Sci 1998;45:1078–82.CrossRefGoogle Scholar
  2. 2.
    Schmand M, Eriksson L, Casey ME, Andreaco MS, Melcher C, Wienhard K, et al. Performance results of a new DOI detector block for a High Resolution PET – LSO Research Tomograph HRRT. IEEE Trans Nucl Sci. 1998;45:3000–6.CrossRefGoogle Scholar
  3. 3.
    Miyaoka RS, Lewellen TK, Yu H, McDaniel DL. Design of a depth of interaction (DOI) PET detector module. IEEE Trans Nucl Sci. 1998;45:1069–73.CrossRefGoogle Scholar
  4. 4.
    Seidel J, Vaquero JJ, Siegel S, Gandler WR, Green MV. Depth identification accuracy of a three layer phoswich PET detector module. IEEE Trans Nucl Sci. 1999;46:485–490.CrossRefGoogle Scholar
  5. 5.
    Shao Y, Silverman RW, Farrell R, Cirignano L, Grazioso R, Shah KS, et al. Design studies of a high resolution PET detector using APD array. IEEE Trans Nucl Sci. 2000;47:1051–7.CrossRefGoogle Scholar
  6. 6.
    Liu H, Omura T, Watanabe M, Yamashita T. Development of a depth of interaction detector for γ-rays. Nucl Inst Meth A. 2001;459:182–90.CrossRefGoogle Scholar
  7. 7.
    Huber JS, Moses WW, Andreaco MS, Petterson O. An LSO scintillator array for a PET detector module with depth of interaction measurement. IEEE Trans Nucl Sci. 2001;48:684–8.CrossRefGoogle Scholar
  8. 8.
    Zhang N, Thompson CJ, Togane D, Cayouette F, Nguyen KQ, Camborde ML. Anode position and last dynode timing circuits for dual-layer BGO scintillator with PS-PMT based modular PET detectors. IEEE Trans Nucl Sci. 2002;49:2203–7.CrossRefGoogle Scholar
  9. 9.
    Streun M, Brandenburg G, Saleh H, Zimmermamm E, Ziemons K, Halling H. Pulse shape discrimination of LSO and LuYAP scintillator for depth of interaction detection in PET. IEEE Trans Nucl Sci. 2003;50:344–7.CrossRefGoogle Scholar
  10. 10.
    Levin CS, Foudray AMK, Olcott PD, Habte F. Investigation of position sensitive avalanche photodiodes for a new high resolution PET detector design. IEEE Trans Nucl Sci. 2004;51:805–10.CrossRefGoogle Scholar
  11. 11.
    Murayama H, Ishibashi H, Uchida H, Omura T, Yamasita T. Depth encoding multicrystal detector for PET. IEEE Trans Nucl Sci. 1998;45:1152–7.CrossRefGoogle Scholar
  12. 12.
    Kasahara T, Murayama H, Omura T, Yamashita T, Ishibashi H, Kawai H, et al. Improvement of the depth of interaction detector for PET on full energy pulse height uniformity. IEEE Trans Nucl Sci. 2003;50:1439–44.CrossRefGoogle Scholar
  13. 13.
    Orita N, Murayama H, Kawai H, Inadama N, Tsuda T. Tree dimensional array of scintillation crystals with proper reflector arrangement for a DOI detector. IEEE Trans Nucl Sci. 2005;52:8–14.CrossRefGoogle Scholar
  14. 14.
    Inadama N, Murayama H, Watanabe M, Omura T, Yamashita T, Kawai H, et al. Performance of a PET detector with a 256ch flat panel PS-PMT. IEEE Trans Nucl Sci. 2004;51:58–62.CrossRefGoogle Scholar
  15. 15.
    Inadama N, Murayama H, Omura T, Yamashita T, Yamamoto S, Ishibashi H, et al. A depth of interaction detector for PET with GSO crystals doped with different amount of Ce. IEEE Trans Nucl Sci. 2002;49:629–633.CrossRefGoogle Scholar
  16. 16.
    Ishibashi H, Kurashige K, Kurata Y, Susa K, Kobayashi M, Tanaka M, et al. Scintillation performance of large Ce-doped Gd2SiO5 (GSO) single crystal. IEEE Trans Nucl Sci. 1998;45:518–21.CrossRefGoogle Scholar
  17. 17.
    Weber MF, Stover CA, Gilbert LR. Giant birefringent optics in multilayer polymer mirrors. Science. 2000;287:2451–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Siegel S, Silverman RW, Shao Y, Cherry SR. Simple charge division readouts for imaging scintillator arrays using a multi-channel PMT. IEEE Trans Nucl Sci. 1996;43:1634–41.CrossRefGoogle Scholar
  19. 19.
    Ishibashi H, Shimizu K, Susa K. Cerium doped GSO scintillators and its applicaton to position sensitive detector. IEEE Trans Nucl Sci. 1989;36:170–2.CrossRefGoogle Scholar
  20. 20.
    Surti S, Karp JS, Freifelder R, Liu F. Optimizing the performance of a PET detector using discrete GSO crystals on a continuous lightguide. IEEE Trans Nucl Sci. 2000;47:1030–6.CrossRefGoogle Scholar

Copyright information

© Japanese Society of Radiological Technology and Japan Society of Medical Physics 2007

Authors and Affiliations

  • Naoko Inadama
    • 1
  • Hideo Murayama
    • 1
  • Yusuke Ono
    • 1
    • 2
  • Tomoaki Tsuda
    • 1
  • Manabu Hamamoto
    • 1
  • Taiga Yamaya
    • 1
  • Eiji Yoshida
    • 1
  • Kengo Shibuya
    • 1
  • Fumihiko Nishikido
    • 1
  • Kei Takahashi
    • 1
    • 2
  • Hideyuki Kawai
    • 2
  1. 1.Molecular Imaging CenterNational Institute of Radiological SciencesChibaJapan
  2. 2.Graduate School of Science and TechnologyChiba UniversityChibaJapan

Personalised recommendations