Journal on Multimodal User Interfaces

, Volume 8, Issue 2, pp 209–216

Effect of stimulus intensity on response time distribution in multisensory integration

  • Ágoston Török
  • Orsolya Kolozsvári
  • Tamás Virágh
  • Ferenc Honbolygó
  • Valéria Csépe
Original Paper

DOI: 10.1007/s12193-013-0135-y

Cite this article as:
Török, Á., Kolozsvári, O., Virágh, T. et al. J Multimodal User Interfaces (2014) 8: 209. doi:10.1007/s12193-013-0135-y

Abstract

To increase the efficiency of multimodal user interfaces, one has to design them according to how multimodal features appear in the real world. Although spatial coincidence and matching intensity levels are important for perception, these factors received little attention in human–computer interaction studies. In our present study we aimed to map how spatial coincidence and different intensity levels influence response times. Sixteen participants performed a simple auditory localization task, where sounds were presented either alone or together with visual non-targets. We found that medium intensity visual stimuli facilitated responses to low intensity sounds. Analyses of response time distributions showed that intensity of target and non-target stimuli affected different parameters of the ex-Gaussian distribution. Our results suggest that multisensory integration and response facilitation may occur even if the non-target has low predictive power to the location of the target. Furthermore, we show that the parameters of the ex-Gaussian distribution can be related to distinct cognitive processes. The current results are potentially applicable in the design of an intelligent warning system that employs the user’s reaction time to adapt the warning signal for optimal results.

Keywords

Multisensory integration Perception Ex-Gaussian distribution Response time 

Supplementary material

12193_2013_135_MOESM1_ESM.pdf (12 kb)
Supplementary material 1 (pdf 11 KB)
12193_2013_135_MOESM2_ESM.pdf (148 kb)
Supplementary material 2 (pdf 148 KB)
12193_2013_135_MOESM3_ESM.pdf (166 kb)
Supplementary material 3 (pdf 165 KB)
12193_2013_135_MOESM4_ESM.pdf (131 kb)
Supplementary material 4 (pdf 130 KB)
12193_2013_135_MOESM5_ESM.pdf (60 kb)
Supplementary material 5 (pdf 59 KB)
12193_2013_135_MOESM6_ESM.pdf (100 kb)
Supplementary material 6 (pdf 99 KB)
12193_2013_135_MOESM7_ESM.pdf (27 kb)
Supplementary material 7 (pdf 26 KB)
12193_2013_135_MOESM8_ESM.pdf (109 kb)
Supplementary material 8 (pdf 109 KB)

Copyright information

© OpenInterface Association 2013

Authors and Affiliations

  • Ágoston Török
    • 1
    • 2
    • 3
  • Orsolya Kolozsvári
    • 2
  • Tamás Virágh
    • 3
  • Ferenc Honbolygó
    • 2
    • 3
  • Valéria Csépe
    • 2
    • 3
  1. 1.Doctoral School of PsychologyEötvös Loránd UniversityBudapestHungary
  2. 2.Institute of Cognitive Neuroscience and Psychology, Research Centre of Natural SciencesHungarian Academy of SciencesBudapestHungary
  3. 3.Department of Cognitive PsychologyEötvös Loránd UniversityBudapestHungary

Personalised recommendations