Journal on Multimodal User Interfaces

, Volume 8, Issue 2, pp 209–216

Effect of stimulus intensity on response time distribution in multisensory integration

  • Ágoston Török
  • Orsolya Kolozsvári
  • Tamás Virágh
  • Ferenc Honbolygó
  • Valéria Csépe
Original Paper


To increase the efficiency of multimodal user interfaces, one has to design them according to how multimodal features appear in the real world. Although spatial coincidence and matching intensity levels are important for perception, these factors received little attention in human–computer interaction studies. In our present study we aimed to map how spatial coincidence and different intensity levels influence response times. Sixteen participants performed a simple auditory localization task, where sounds were presented either alone or together with visual non-targets. We found that medium intensity visual stimuli facilitated responses to low intensity sounds. Analyses of response time distributions showed that intensity of target and non-target stimuli affected different parameters of the ex-Gaussian distribution. Our results suggest that multisensory integration and response facilitation may occur even if the non-target has low predictive power to the location of the target. Furthermore, we show that the parameters of the ex-Gaussian distribution can be related to distinct cognitive processes. The current results are potentially applicable in the design of an intelligent warning system that employs the user’s reaction time to adapt the warning signal for optimal results.


Multisensory integration Perception Ex-Gaussian distribution Response time 

Supplementary material

12193_2013_135_MOESM1_ESM.pdf (12 kb)
Supplementary material 1 (pdf 11 KB)
12193_2013_135_MOESM2_ESM.pdf (148 kb)
Supplementary material 2 (pdf 148 KB)
12193_2013_135_MOESM3_ESM.pdf (166 kb)
Supplementary material 3 (pdf 165 KB)
12193_2013_135_MOESM4_ESM.pdf (131 kb)
Supplementary material 4 (pdf 130 KB)
12193_2013_135_MOESM5_ESM.pdf (60 kb)
Supplementary material 5 (pdf 59 KB)
12193_2013_135_MOESM6_ESM.pdf (100 kb)
Supplementary material 6 (pdf 99 KB)
12193_2013_135_MOESM7_ESM.pdf (27 kb)
Supplementary material 7 (pdf 26 KB)
12193_2013_135_MOESM8_ESM.pdf (109 kb)
Supplementary material 8 (pdf 109 KB)


  1. 1.
    Barany P, Csapo A (2012) Definition and synergies of cognitive infocommunications. Acta Polytech Hung 9(1):67–83Google Scholar
  2. 2.
    Ho C, Reed N, Spence C (2007) Multisensory in-car warning signals for collision avoidance. Human Factors 49(6):1107–1114CrossRefGoogle Scholar
  3. 3.
    Ho C, Santangelo V, Spence C (2009) Multisensory warning signals: when spatial correspondence matters. Expl Brain Res 195(2):261–272CrossRefGoogle Scholar
  4. 4.
    Meredith MA, Stein BE (1986) Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J Neurophysiol 56(3):640–662Google Scholar
  5. 5.
    Meredith MA, Stein BE (1983) Interactions among converging sensory inputs in the superior colliculus. Science (New York, N.Y.) 221(4608):389–391CrossRefGoogle Scholar
  6. 6.
    Stein BE, Meredith MA (1993) The merging of the senses. MIT Press, p 224Google Scholar
  7. 7.
    Ohshiro T, Angelaki DE, DeAngelis GC (2011) A normalization model of multisensory integration. Nat Neurosci 14(6):775–782CrossRefGoogle Scholar
  8. 8.
    Ghazanfar AA, Schroeder CE (2006) Is neocortex essentially multisensory? Trends Cognit Sci 10(6):278–285CrossRefGoogle Scholar
  9. 9.
    McGurk H, MacDonald J (1976) Hearing lips and seeing voices. Nature 264(5588):746–748CrossRefGoogle Scholar
  10. 10.
    Senkowski D, Saint-Amour D, Höfle M, Foxe JJ (2011) Multisensory interactions in early evoked brain activity follow the principle of inverse effectiveness. NeuroImage 56(4):2200–2208CrossRefGoogle Scholar
  11. 11.
    Bolognini N, Leo F, Passamonti C, Stein BE, Làdavas E (2007) Multisensory-mediated auditory localization. Perception 36(10):1477–1485CrossRefGoogle Scholar
  12. 12.
    Leo F, Bolognini N, Passamonti C, Stein BE, Làdavas E (2008) Cross-modal localization in hemianopia: new insights on multisensory integration. Brain 131(Pt 3):855–865CrossRefGoogle Scholar
  13. 13.
    Colonius H, Diederich A (2012) Focused attention vs. crossmodal signals paradigm: deriving predictions from the time-window-of-integration model. Front Integr Neurosci 6:62CrossRefGoogle Scholar
  14. 14.
    Morgan ML, Deangelis GC, Angelaki DE (2008) Multisensory integration in macaque visual cortex depends on cue reliability. Neuron 59(4):662–673CrossRefGoogle Scholar
  15. 15.
    Fetsch CR, Pouget A, DeAngelis GC, Angelaki DE (2012) Neural correlates of reliability-based cue weighting during multisensory integration. Nat Neurosci 15(1):146–154CrossRefGoogle Scholar
  16. 16.
    Lacouture Y, Cousineau D (2008) How to use MATLAB to fit the ex-Gaussian and other probability functions to a distribution of response times. Tutor Quant Methods Psychol 4(1):35–45Google Scholar
  17. 17.
    Whelan R (2008) Effective analysis of reaction time data. Psychol Record 58(3):475–482Google Scholar
  18. 18.
    Török Á, Asbóth KK, Honbolygó F, Csépe V (2012) Intensity dependent interaction in audiovisual integration. In: Proceedings of the 3rd IEEE conference on cognitive infocommunications, pp 469–473Google Scholar
  19. 19.
    Boersma P (2001) Praat, a system for doing phonetics by computer. Glot Int 5(9–10):341–345Google Scholar
  20. 20.
    Miller J (1988) A warning about median reaction time. J Exp Psychol 14(3):539–543Google Scholar
  21. 21.
    Diederich A, Colonius H (2004) Bimodal and trimodal multisensory enhancement: effects of stimulus onset and intensity on reaction time. Percept Psychophys 66(8):1388–1404CrossRefGoogle Scholar
  22. 22.
    Di Russo F, Martínez A, Sereno MI, Pitzalis S, Hillyard SA (2002) Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp 15(2):95–111CrossRefGoogle Scholar
  23. 23.
    Kuriki S, Nogai T, Hirata Y (1995) Cortical sources of middle latency responses of auditory evoked magnetic field. Hear Res 92(1–2):47–51CrossRefGoogle Scholar
  24. 24.
    Fort A, Delpuech C, Pernier J, Giard M-H (2002) Dynamics of cortico-subcortical cross-modal operations involved in audio-visual object detection in humans. Cerebral Cortex (New York, N.Y.: 1991) 12(10):1031–1039CrossRefGoogle Scholar
  25. 25.
    Giard MH, Peronnet F (1999) Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study. J Cognit Neurosci 11(5):473–490CrossRefGoogle Scholar
  26. 26.
    Perrault TJ, Vaughan JW, Stein BE, Wallace MT (2005) Superior colliculus neurons use distinct operational modes in the integration of multisensory stimuli. J Neurophysiol 93(5):2575–2586CrossRefGoogle Scholar
  27. 27.
    Alais D, Burr D (2004) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14(3):257–262CrossRefGoogle Scholar
  28. 28.
    Wozny DR, Shams L (2011) Recalibration of auditory space following milliseconds of cross-modal discrepancy. J Neurosci 31(12):4607–4612 Google Scholar
  29. 29.
    Fujisaki W, Shimojo S, Kashino M, Nishida S (2004) Recalibration of audiovisual simultaneity. Nat Neurosci 7(7):773–778Google Scholar
  30. 30.
    Bertelson P, Aschersleben G (1998) Automatic visual bias of perceived auditory location. Psychon Bull Rev 5(3):482–489CrossRefGoogle Scholar
  31. 31.
    Vroomen J, De Gelder B (2004) Perceptual effects of cross-modal stimulation: ventriloquism and the freezing phenomenon. Handb Multisens Process 3(1):1–23Google Scholar
  32. 32.
    Diederich A, Schomburg A, Colonius H (2012) Saccadic reaction times to audiovisual stimuli show effects of oscillatory phase reset. PLoS ONE 7(10):e44910CrossRefGoogle Scholar
  33. 33.
    Ghirardelli TG, Scharine AA (2009) Auditory-visual interactions. In: Letowski, Russo MB, Tomasz R (eds) Helmet-mounted displays: sensation, perception, and cognition issues. U.S. Army Aeromedical Research, pp 599–618Google Scholar

Copyright information

© OpenInterface Association 2013

Authors and Affiliations

  • Ágoston Török
    • 1
    • 2
    • 3
  • Orsolya Kolozsvári
    • 2
  • Tamás Virágh
    • 3
  • Ferenc Honbolygó
    • 2
    • 3
  • Valéria Csépe
    • 2
    • 3
  1. 1.Doctoral School of PsychologyEötvös Loránd UniversityBudapestHungary
  2. 2.Institute of Cognitive Neuroscience and Psychology, Research Centre of Natural SciencesHungarian Academy of SciencesBudapestHungary
  3. 3.Department of Cognitive PsychologyEötvös Loránd UniversityBudapestHungary

Personalised recommendations