Journal on Multimodal User Interfaces

, Volume 4, Issue 1, pp 11–25 | Cite as

Bacteria Hunt

Evaluating multi-paradigm BCI interaction
  • Christian Mühl
  • Hayrettin Gürkök
  • Danny Plass-Oude Bos
  • Marieke E. Thurlings
  • Lasse Scherffig
  • Matthieu Duvinage
  • Alexandra A. Elbakyan
  • SungWook Kang
  • Mannes Poel
  • Dirk Heylen
Open Access
Original Paper


The multimodal, multi-paradigm brain-computer interfacing (BCI) game Bacteria Hunt was used to evaluate two aspects of BCI interaction in a gaming context. One goal was to examine the effect of feedback on the ability of the user to manipulate his mental state of relaxation. This was done by having one condition in which the subject played the game with real feedback, and another with sham feedback. The feedback did not seem to affect the game experience (such as sense of control and tension) or the objective indicators of relaxation, alpha activity and heart rate. The results are discussed with regard to clinical neurofeedback studies. The second goal was to look into possible interactions between the two BCI paradigms used in the game: steady-state visually-evoked potentials (SSVEP) as an indicator of concentration, and alpha activity as a measure of relaxation. SSVEP stimulation activates the cortex and can thus block the alpha rhythm. Despite this effect, subjects were able to keep their alpha power up, in compliance with the instructed relaxation task. In addition to the main goals, a new SSVEP detection algorithm was developed and evaluated.


Brain-computer interfacing Multimodal interaction Steady-state visually-evoked potentials Concentration Neurofeedback Relaxation Game 


  1. 1.
    Aarseth E (2003) Playing research: methodological approaches to game analysis. In: Proceedings of the 5th international digital arts and culture conference (DAC), Melbourne, Australia Google Scholar
  2. 2.
    Allison BZ, McFarland DJ, Schalk G, Zheng SD, Jackson MM, Wolpaw JR (2008) Towards an independent brain–computer interface using steady state visual evoked potentials. Clin Neurophysiol 119(2):399–408 CrossRefGoogle Scholar
  3. 3.
    Ancoli S, Kamiya J (1978) Methodological issues in alpha biofeedback training. Appl Psychophysiol Biofeedback 3(2):159–183 Google Scholar
  4. 4.
    Arns M, de Ridder S, Strehl U, Breteler M, Coenen A (2009) Efficacy of neurofeedback treatment in ADHD: the effects on inattention, impulsivity and hyperactivity: a meta-analysis. Clin EEG Neurosci 40(3):180–189 Google Scholar
  5. 5.
    Barry RJ, Clarke AR, Johnstone SJ, Magee CA, Rushby JA (2007) EEG differences between eyes-closed and eyes-open resting conditions. Clin Neurophysiol 118(12):2765–2773 CrossRefGoogle Scholar
  6. 6.
    Barry RJ, Clarke AR, Johnstone SJ, Brown CR (2009) EEG differences in children between eyes-closed and eyes-open resting conditions. Clin Neurophysiol 120(10):1806–1811 CrossRefGoogle Scholar
  7. 7.
    Cheng M, Gao X, Gao S, Xu D (2002) Design and implementation of a brain-computer interface with high transfer rates. IEEE Trans Biomed Eng 49(10):1181–1186 CrossRefGoogle Scholar
  8. 8.
    Cohen BA, Sances A Jr (1977) Stationarity of the human electroencephalogram. Med Biol Eng Comput 15(5):513–518 CrossRefGoogle Scholar
  9. 9.
    Delorme A (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21 CrossRefGoogle Scholar
  10. 10.
    Egner T, Gruzelier JH (2003) Ecological validity of neurofeedback: modulation of slow wave eeg enhances musical performance. Neuroreport 14(9):1221–1224 CrossRefGoogle Scholar
  11. 11.
    Fairclough SH (2009) Fundamentals of physiological computing. Interact Comput 21(1–2):133–145 CrossRefGoogle Scholar
  12. 12.
    Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874 CrossRefMathSciNetGoogle Scholar
  13. 13.
    Fell J, Elfadil H, Klaver P, Röschke J, Elger CE, Fernández G (2002) Covariation of spectral and nonlinear EEG measures with alpha biofeedback. Int J Neurosci 112(9):1047–1057 CrossRefGoogle Scholar
  14. 14.
    Gruzelier J, Egner T, Vernon D (2006) Validating the efficacy of neurofeedback for optimising performance. Prog Brain Res 159:421–431 CrossRefGoogle Scholar
  15. 15.
    Hammond D (2005) Neurofeedback treatment of depression and anxiety. J Adult Develop 12(2):131–137 CrossRefGoogle Scholar
  16. 16.
    Hardt JV, Kamiya J (1978) Anxiety change through EEG alpha feedback seen only in high anxiety subjects. Science 201(201):79–81 CrossRefGoogle Scholar
  17. 17.
    Hare JF, Timmons BH, Roberts JR, Burman AS (1982) EEG alpha-biofeedback training: an experimental technique for the management of anxiety. J Med Eng Technol 6(1):19–24 CrossRefGoogle Scholar
  18. 18.
    Herrmann C (2001) Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp Brain Res 137(3):346–353 CrossRefGoogle Scholar
  19. 19.
    Hjelm SI (2003) Research + design: the making of brainball. Interactions 10(1):26–34 CrossRefGoogle Scholar
  20. 20.
    IJsselsteijn W, de Kort Y, Poels K, Jurgelionis A, Bellotti F (2007) Characterising and measuring user experiences in digital games. In: International conference on advances in computer entertainment technology (ACE 2007), Salzburg, Austria Google Scholar
  21. 21.
    Jasper HH (1958) The ten-twenty electrode system of the international federation. Electroencephalogr Clin Neurophysiol 10:371–375 Google Scholar
  22. 22.
    Jia C, Xu H, Hong B, Gao X, Zhang Z, Gao S (2007) A human computer interface using SSVEP-based BCI technology. In: Schmorrow DD, Reeves LM (eds) Foundations of augmented cognition, lecture notes in computer science, vol 4565. Springer, Berlin, Heidelberg, pp 113–119, Chap 13 CrossRefGoogle Scholar
  23. 23.
    Kelly SP, Lalor EC, Finucane C, McDarby G, Reilly RB (2005) Visual spatial attention control in an independent brain-computer interface. IEEE Trans Bio-Medical Eng 52(9):1588–1596 CrossRefGoogle Scholar
  24. 24.
    Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29(2–3):169–195 CrossRefGoogle Scholar
  25. 25.
    Lang PJ, Greenwald MK, Bradley MM, Hamm AO (1993) Looking at pictures: Affective, facial, visceral, and behavioral reactions. Psychophysiology 30(3):261–273 CrossRefGoogle Scholar
  26. 26.
    McFarland DJ, McCane LM, David SV, Wolpaw JR (1997) Spatial filter selection for EEG-based communication. Electroencephalogr Clin Neurophysiol 103(3):386–394 CrossRefGoogle Scholar
  27. 27.
    Miller G, Lutzenberger W, Elbert T (1991) The linked-reference issue in EEG and ERP recording. J Psychophysiol 5:273 Google Scholar
  28. 28.
    Moore N (2005) The neurotherapy of anxiety disorders. J Adult Develop 12(2):147–154 CrossRefGoogle Scholar
  29. 29.
    Morgan ST, Hansen JC, Hillyard SA (1996) Selective attention to stimulus location modulates the steady-state visual evoked potential. Proc Nat Acad Sci USA 93(10):4770–4774 CrossRefGoogle Scholar
  30. 30.
    Mühl C, Gürkök H, Plass-Oude Bos D, Thurlings ME, Scherffig L, Duvinage M, Elbakyan AA, Kang S, Poel M, Heylen D (2010) Bacteria Hunt: a multimodal, multiparadigm BCI game. In: Proceedings of the 5th international summer workshop on multimodal interfaces (eNTERFACE’09), Genova, Italy, pp 41–62 Google Scholar
  31. 31.
    Mulholland T, Goodman D, Boudrot R (1983) Attention and regulation of EEG alpha-attenuation responses. Appl Psychophysiol Biofeedback 8(4):585–600 Google Scholar
  32. 32.
    Müller MM, Picton TW, Valdes-Sosa P, Riera J, Teder-Sälejärvi WA, Hillyard SA (1998) Effects of spatial selective attention on the steady-state visual evoked potential in the 20–28 Hz range. Brain Res Cogn Brain Res 6(4):249–261 CrossRefGoogle Scholar
  33. 33.
    Müller-Putz G, Scherer R, Brauneis C, Pfurtscheller G (2005) Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. J Neural Eng 2(4):123–130 CrossRefGoogle Scholar
  34. 34.
    Nijholt A, Tan D, Pfurtscheller G, Brunner C, Millán JDR, Allison B, Graimann B, Popescu F, Blankertz B, Müller KR (2008) Brain-computer interfacing for intelligent systems. IEEE Intell Syst, pp 76–83 Google Scholar
  35. 35.
    Nijholt A, Reuderink B, Plass-Oude Bos D (2009) Turning shortcomings into challenges: brain-computer interfaces for games. In: Intelligent technologies for interactive entertainment, pp 153–168 Google Scholar
  36. 36.
    Nowlis DP, Kamiya J (1970) The control of electroencephalographic alpha rhythms through auditory feedback and the associated mental activity. Psychophysiology 6(4):476–484 CrossRefGoogle Scholar
  37. 37.
    Palva S, Palva J (2007) New vistas for α-frequency band oscillations. Trends Neurosci 30(4):150–158 CrossRefGoogle Scholar
  38. 38.
    Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857 CrossRefGoogle Scholar
  39. 39.
    Plass-Oude Bos D, Reuderink B, Laar B, Gürkök H, Mühl C, Poel M, Nijholt A, Heylen D (2010) Brain-computer interfacing and games. In: Tan DS, Nijholt A (eds) Brain-computer interfaces. Springer, London, pp 149–178, Chap 10 CrossRefGoogle Scholar
  40. 40.
    Regan D (1989) Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine. Appleton & Lange, East Norwalk Google Scholar
  41. 41.
    Reuderink B (2008) Games and brain-computer interfaces: the state of the art. Tech rep, Human-Media Interaction, University of Twente, The Netherlands Google Scholar
  42. 42.
    Reuderink B (2009a) golemml: Python machine learning library for EEG processing.
  43. 43.
    Reuderink B (2009b) psychicml: Python signal processing library for EEG processing.
  44. 44.
    Rice KM, Blanchard EB, Purcell M (1993) Biofeedback treatments of generalized anxiety disorder: preliminary results. Appl Psychophysiol Biofeedback 18(2):93–105 Google Scholar
  45. 45.
    Scherer R, Schloegl A, Lee F, Bischof H, Janša J, Pfurtscheller G (2007) The self-paced Graz brain-computer interface: methods and applications. Comput Intell Neurosci Google Scholar
  46. 46.
    Schlögl A, Brunner C (2008) Biosig: A free and open source software library for BCI research. Computer 41(10):44–50 CrossRefGoogle Scholar
  47. 47.
    Schlögl A, Keinrath C, Zimmermann D, Scherer R, Leeb R, Pfurtscheller G (2007) A fully automated correction method of EOG artifacts in EEG recordings. Clin Neurophysiol 118(1):98–104 CrossRefGoogle Scholar
  48. 48.
    Schürmann M, Başar E (2001) Functional aspects of alpha oscillations in the EEG. Int J Psychophysiol 39(2–3):151–158 CrossRefGoogle Scholar
  49. 49.
    Shaw JC (1996) Intention as a component of the alpha-rhythm response to mental activity. Int J Psychophysiol 24(1–2):7–23 CrossRefGoogle Scholar
  50. 50.
    Skidmore T, Hill H (1991) The evoked potential human-computer interface. Proc Ann Int Conf IEEE Eng Med Biol Soc 13(1):407–408 CrossRefGoogle Scholar
  51. 51.
    Sokhadze TM, Cannon RL, Trudeau DL (2008) EEG biofeedback as a treatment for substance use disorders: review, rating of efficacy and recommendations for further research. J Neurother: Invest Neuromodulation Neurofeedback Appl Neurosci 12(1):5–43 Google Scholar
  52. 52.
    Sterman M, Egner T (2006) Foundation and practice of neurofeedback for the treatment of epilepsy. Appl Psychophysiol Biofeedback 31(1):21–35 CrossRefGoogle Scholar
  53. 53.
    Thurlings ME, Brouwer AM, van Erp JBF, Werkhoven PJ (2009) SSVEPs for BCI? The effect of stimulus eccentricity on SSVEPs, abstract presented at the 39th Annual Meeting of the Society for Neuroscience Google Scholar
  54. 54.
    Thurlings ME, Erp JBF, Brouwer AM, Werkhoven PJ (2010) EEG-based navigation from a human factors perspective. In: Tan DS, Nijholt A (eds) Brain-computer interfaces. Springer, London, pp 71–86, Chap 5 CrossRefGoogle Scholar
  55. 55.
    Ward A, Murray-Ward M (1999) Assessment in the classroom. Wadsworth, Belmont Google Scholar
  56. 56.
    Welch P (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short modified periodograms. IEEE Trans Audio Electroacoust 15(2):70–73 CrossRefMathSciNetGoogle Scholar
  57. 57.
    Zander TO, Kothe C, Jatzev S, Gaertner M (2010) Enhancing human-computer interaction with input from active and passive brain-computer interfaces. In: Tan DS, Nijholt A (eds) Brain-computer interfaces. Springer, London, pp 181–199, Chap 11 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Christian Mühl
    • 1
  • Hayrettin Gürkök
    • 1
  • Danny Plass-Oude Bos
    • 1
  • Marieke E. Thurlings
    • 2
    • 3
  • Lasse Scherffig
    • 4
  • Matthieu Duvinage
    • 5
  • Alexandra A. Elbakyan
    • 6
  • SungWook Kang
    • 7
  • Mannes Poel
    • 1
  • Dirk Heylen
    • 1
  1. 1.University of TwenteEnschedeThe Netherlands
  2. 2.TNO Human FactorsSoesterbergThe Netherlands
  3. 3.Utrecht UniversityUtrechtThe Netherlands
  4. 4.Academy of Media Arts CologneCologneGermany
  5. 5.University of MonsMonsBelgium
  6. 6.Kazakh National Technical UniversityAlmatyKazakhstan
  7. 7.Gwangju Institute of Science and TechnologyGwangjuSouth Korea

Personalised recommendations