C. sakazakii activates AIM2 pathway accompanying with excessive ER stress response in mammalian mammary gland epithelium

  • Wenjuan Song
  • Le Sheng
  • Fanghui Chen
  • Yu Tian
  • Lian Li
  • Genlin Wang
  • Honglin Li
  • Yafei CaiEmail author
Original Paper


Bovine mastitis is a common inflammatory disease caused by various factors. The main factor of mastitis is pathogenic microorganism infection, such as Staphylococcus aureus, Escherichia coli, and Streptococcus. Cronobacter sakazakii (C. sakazakii) is a newly discovered pathogenic bacteria in milk products, which seriously threat human health in recent years. At present, it has not been reported that the pathogenesis of mastitis is caused by C. sakazakii. This study investigated the inflammation of mammary gland epithelium, which was induced by C. sakazakii for the first time. We focused on bacterial isolation, histological observation, AIM2 inflammasome pathways, endoplasmic reticulum stress, and apoptosis. The results showed that C. sakazakii–induced inflammation caused damage of tissue, significantly increased the production of pro-inflammatory cytokines (including TNF-α, IL-1β, and IL-6), activated the AIM2 inflammasome pathway (increased the expression of AIM2 and cleaved IL-1β), and induced endoplasmic reticulum stress (increased the expression of ERdj4, Chop, Grp78) and apoptosis (increased the ratio of Bax/Bcl-2, a marker of apoptosis). In conclusion, it is suggested that it maybe inhibite AIM2 inflammasome pathways and alleviate endoplasmic reticulum stress (ER stress) against the C. sakazakii–induced inflammation.


Cronobacter sakazakii AIM2 inflammasome ER stress Apoptosis 


Funding information

This study was supported by The National Natural Science Foundation of China (Grant No. 31970413), National Key R&D Program of China (Grant No. 2018YFC1200201), and Start-up grant from Nanjing Agricultural University (Grant No. 804090).


  1. Bialuk I, Cieslinska M, Kowalczuk O, Bonda TA, Niklinski J, Winnicka MM (2019) IL-6 deficiency attenuates p53 protein accumulation in aged male mouse hippocampus. Biogerontology. CrossRefGoogle Scholar
  2. Brenjian S et al (2019) Resveratrol treatment in patients with polycystic ovary syndrome decreased pro-inflammatory and endoplasmic reticulum stress markers. Am J Reprod Immunol:e13186.
  3. Bronner DN et al (2015) Endoplasmic reticulum stress activates the Inflammasome via NLRP3- and Caspase-2-driven mitochondrial damage. Immunity 43:451–462. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cai Y et al (2019) Indispensable role of the ubiquitin-fold modifier 1-specific E3 ligase in maintaining intestinal homeostasis and controlling gut inflammation. Cell Discov 5:7. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chen KW, Gro CJ, Flor Vásquez S, Stacey KJ, Jurg T, Sweet MJ, Kate S (2014) The neutrophil NLRC4 inflammasome selectively promotes IL-1β maturation without pyroptosis during acute Salmonella challenge. Cell Reports 70:68Google Scholar
  6. Chen D et al (2019) Evaluation of Cronobacter sakazakii inactivation and physicochemical property changes of non-fat dry milk powder by cold atmospheric plasma. Food Chem 290:270–276. CrossRefPubMedGoogle Scholar
  7. Clarke H, Chambers J, Liniker E, Marciniak S (2014) Endoplasmic reticulum stress in malignancy. Cancer Cell 25:563–573CrossRefGoogle Scholar
  8. Costa Franco MMS, Marim FM, Alves-Silva J, Cerqueira D, Rungue M, Tavares IP, Oliveira SC (2019) AIM2 senses Brucella abortus DNA in dendritic cells to induce IL-1beta secretion, pyroptosis and resistance to bacterial infection in mice. Microbes Infect 21:85–93. CrossRefPubMedGoogle Scholar
  9. Eggleton P, Smerdon GR, Holley JE, Gutowski NJ (2017) Manipulation of oxygen and endoplasmic reticulum stress factors as possible interventions for treatment of multiple sclerosis: evidence for and againstGoogle Scholar
  10. English BC, Prooyen NV, Örd T, Örd T, Sil A (2017) The transcription factor CHOP, an effector of the integrated stress response, is required for host sensitivity to the fungal intracellular pathogenHistoplasma capsulatum. Plos Pathogens 13:e1006589CrossRefGoogle Scholar
  11. Filioussis G et al (2019) Short communication: bovine mastitis caused by a multidrug-resistant, mcr-1-positive (colistin-resistant), extended-spectrum beta-lactamase-producing Escherichia coli clone on a Greek dairy farm. J Dairy Sci. CrossRefGoogle Scholar
  12. Fritz JM, Dong M, Apsley KS, Martin EP, Na CL, Sitaraman S, Weaver TE (2014) Deficiency of the BiP cochaperone ERdj4 causes constitutive endoplasmic reticulum stress and metabolic defects. Mol Biol Cell 25:431–440. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gomes MT et al (2013) Critical role of ASC inflammasomes and bacterial type IV secretion system in caspase-1 activation and host innate resistance to Brucella abortus infection. J Immunol (Baltimore, Md : 1950) 190:3629–3638. CrossRefGoogle Scholar
  14. Gong Z et al (2019) Deficiency in AIM2 induces inflammation and adipogenesis in white adipose tissue leading to obesity and insulin resistance. Diabetologia. CrossRefGoogle Scholar
  15. Haapala V et al (2018) Semen as a source of mycoplasma bovis mastitis in dairy herds. Vet Microbiol 216:60–66CrossRefGoogle Scholar
  16. Healy B et al (2010) Cronobacter (Enterobacter sakazakii): an opportunistic foodborne pathogen. Foodborne Pathogens Dis 7:339–350CrossRefGoogle Scholar
  17. Hunter CJ, Singamsetty VK, Chokshi NK, Boyle P, Camerini V, Grishin AV, Upperman JS, Ford HR, Prasadarao NV (2008) Enterobacter sakazakii enhances epithelial cell injury by inducing apoptosis in a rat model of necrotizing enterocolitis. J Infect Dis 198:586–593CrossRefGoogle Scholar
  18. Kleizen B, Braakman I (2004) Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol 16:343–349CrossRefGoogle Scholar
  19. Kovacs SB, Miao EA (2017) Gasdermins: effectors of pyroptosis trends. Cell Biol 27:673–684. CrossRefGoogle Scholar
  20. Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B (2018) Endoplasmic reticulum stress signaling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol S0168827818321615-Google Scholar
  21. Lee KI et al (2019) Silica nanoparticles induce caspase-dependent apoptosis through reactive oxygen species-activated endoplasmic reticulum stress pathway in neuronal cells. Toxicol In Vitro:104739. CrossRefGoogle Scholar
  22. Li Y et al (2005) Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-α and Interleukin-6 Model Of NF-κB- and map kinase-dependent inflammation in advanced atherosclerosis. J Biol Chem 280:21763–21772CrossRefGoogle Scholar
  23. Li Y, Guo Y, Tang J, Jiang J, Chen Z (2014) New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim Biophys Sin (Shanghai) 46:629–640. CrossRefGoogle Scholar
  24. Li BX, Li WY, Tian YB, Guo SX, Huang YM, Xu DN, Cao N (2019) Polysaccharide of Atractylodes macrocephala Koidz enhances cytokine secretion by stimulating the TLR4-MyD88-NF-kappaB signaling pathway in the mouse spleen. J Med Food 22:937–943. CrossRefPubMedGoogle Scholar
  25. Mankan AK, Therese D, Dieter J, Veit H (2012) The NLRP3/ASC/Caspase-1 axis regulates IL-1β processing in neutrophils. Eur J Immunol 42:710–715CrossRefGoogle Scholar
  26. Minamino T, Komuro IM (2010) Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease. Circulation Res 107:1071–1082CrossRefGoogle Scholar
  27. Mullane NR, Iversen C, Healy B, Walsh C, Whyte P, Wall PG, Quinn T, Fanning S (2007) Enterobacter sakazakii an emerging bacterial pathogen with implications for infant health. Minerva Pediatr 59:137–148PubMedGoogle Scholar
  28. Namgaladze D, Khodzhaeva V, Brune B (2019) ER-mitochondria communication in cells of the innate immune system. Cells:8. CrossRefGoogle Scholar
  29. Pejman S, Kamarehei M, Riazi G, Pooyan S, Balalaie S (2019) Ac-SDKP ameliorates the progression of experimental autoimmune encephalomyelitis via inhibition of ER stress and oxidative stress in the hippocampus of C57BL/6 mice. Brain Res Bull. CrossRefGoogle Scholar
  30. Peterson LW, Philip NH, DeLaney A, Wynosky-Dolfi MA, Asklof K, Gray F, Choa R, Bjanes E, Buza EL, Hu B, Dillon CP, Green DR, Berger SB, Gough PJ, Bertin J, Brodsky IE (2017) RIPK1-dependent apoptosis bypasses pathogen blockade of innate signaling to promote immune defense. J Exp Med 214:3171–3182. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L, Vanaja SK, Monks BG, Ganesan S, Latz E, Hornung V, Vogel SN, Szomolanyi-Tsuda E, Fitzgerald KA (2010) The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 11:395–402CrossRefGoogle Scholar
  32. Ruan H, Zhang Z, Tian L, Wang S, Hu S, Qiao JJ (2016) The salmonella effector SopB prevents ROS-induced apoptosis of epithelial cells by retarding TRAF6 recruitment to mitochondria. Biochem Biophys Res Commun 478:618–623. CrossRefPubMedGoogle Scholar
  33. Sato AY, Tu X, Mcandrews KA, Plotkin LI, Bellido T (2015) Prevention of glucocorticoid induced-apoptosis of osteoblasts and osteocytes by protecting against endoplasmic reticulum (ER) stress in vitro and in vivo in female mice ☆. Bone 73:60–68CrossRefGoogle Scholar
  34. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832. CrossRefGoogle Scholar
  35. Schwarz DS, Blower MD (2016) The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci 73:79–94CrossRefGoogle Scholar
  36. Song X, Ma F, Herrup K (2019) Accumulation of cytoplasmic DNA due to ATM Deficiency activates the microglial viral response system with neurotoxic consequences. J Neurosci 39:6378–6394. CrossRefPubMedGoogle Scholar
  37. Wu H et al (2017) PRDM5 promotes the apoptosis of epithelial cells induced by IFN-gamma during Crohn’s disease Pathol. Res Pract 213:666–673. CrossRefGoogle Scholar
  38. Wu T, Liu W, Fan T, Zhong H, Zhou H, Guo W, Zhu X (2019) 5-Androstenediol prevents radiation injury in mice by promoting NF-kappaB signaling and inhibiting AIM2 inflammasome activation. Biomed Pharmacother 121:109597. CrossRefPubMedGoogle Scholar
  39. Zhang B et al (2019) NFkappaB/Orai1 facilitates endoplasmic reticulum stress by oxidative stress in the pathogenesis of non-alcoholic fatty liver disease. Front Cell Dev Biol 7:202. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Zheng L, Xu Y, Lu J, Liu M, Dai B, Miao J, Yin Y (2016) Variant innate immune responses of mammary epithelial cells to challenge by Staphylococcus aureus, Escherichia coli and the regulating effect of taurine on these bioprocesses. Free Radical Biol Med 96:166–180CrossRefGoogle Scholar
  41. Zheng Y et al (2019) Betulinic acid suppresses breast cancer metastasis by targeting GRP78-mediated glycolysis and ER stress apoptotic pathway. Oxid Med Cell Longev 2019:8781690. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Cell Stress Society International 2020

Authors and Affiliations

  1. 1.College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
  2. 2.DHI Center of Jiangsu ProvinceNanjingChina
  3. 3.Weigang Dairy CompanyNanjingChina
  4. 4.Department of Biochemistry and Molecular BiologyMedical College of Georgia Augusta UniversityAugustaUSA

Personalised recommendations