Advertisement

Structure-function relationship of H2A-H2B specific plant histone chaperones

  • Ashish Kumar
  • Dileep VasudevanEmail author
Mini Review

Abstract

Studies on chromatin structure and function have gained a revived popularity. Histone chaperones are significant players in chromatin organization. They play a significant role in vital nuclear functions like transcription, DNA replication, DNA repair, DNA recombination, and epigenetic regulation, primarily by aiding processes such as histone shuttling and nucleosome assembly/disassembly. Like the other eukaryotes, plants also have a highly orchestrated and dynamic chromatin organization. Plants seem to have more isoforms within the same family of histone chaperones, as compared with other organisms. As some of these are specific to plants, they must have evolved to perform functions unique to plants. However, it appears that only little effort has gone into understanding the structural features of plant histone chaperones and their structure-function relationships. Studies on plant histone chaperones are essential for understanding their role in plant chromatin organization and how plants respond during stress conditions. This review is on the structural and functional aspects of plant histone chaperone families, specifically those which bind to H2A-H2B, viz nucleosome assembly protein (NAP), nucleoplasmin (NPM), and facilitates chromatin transcription (FACT). Here, we also present comparative analyses of these plant histone chaperones with available histone chaperone structures. The review hopes to incite interest among researchers to pursue further research in the area of plant chromatin and the associated histone chaperones.

Keywords

Histone chaperones H2A-H2B NAP1 NRP1 FACT Nucleoplasmin 

Notes

Acknowledgements

The authors acknowledge the intramural support from the Institute of Life Sciences, Bhubaneswar, and the research fellowship to A.K. from the Department of Biotechnology, Government of India.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aguilar-Gurrieri C, Larabi A, Vinayachandran V, Patel NA, Yen K, Reja R, Ebong IO, Schoehn G, Robinson CV, Pugh BF, Panne D (2016) Structural evidence for Nap1-dependent H2A-H2B deposition and nucleosome assembly. EMBO J 35:1465–1482PubMedPubMedCentralCrossRefGoogle Scholar
  2. Are VN, Ghosh B, Kumar A, Gadre R, Makde RD (2016) Crystal structure and dynamics of Spt16N-domain of FACT complex from Cicer arietinum. Int J Biol Macromol 88:36–43PubMedCrossRefPubMedCentralGoogle Scholar
  3. Avvakumov N, Nourani A, Cote J (2011) Histone chaperones: modulators of chromatin marks. Mol Cell 41:502–514PubMedCrossRefPubMedCentralGoogle Scholar
  4. Barna B, Gémes K, Domoki M, Bernula D, Ferenc G, Bálint B, Nagy I, Fehér A (2018) Arabidopsis NAP-related proteins (NRPs) contribute to the coordination of plant growth, developmental rate, and age-related pathogen resistance under short days. Plant Sci 267:124–134PubMedCrossRefPubMedCentralGoogle Scholar
  5. Berndsen CE et al (2008) Molecular functions of the histone acetyltransferase chaperone complex Rtt109-Vps75. Nat Struct Mol Biol 15:948–956PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bondarenko MT, Maluchenko NV, Valieva ME, Gerasimova NS, Kulaeva OI, Georgiev PG, Studitsky VM (2015) Structure and function of histone chaperone FACT. Mol Biol (Mosk) 49:891–904CrossRefGoogle Scholar
  7. Bourque S et al (2016) The evolution of HD2 proteins in green plants trends. Plant Sci 21:1008–1016CrossRefGoogle Scholar
  8. Bruhn SL, Pil PM, Essigmann JM, Housman DE, Lippard SJ (1992) Isolation and characterization of human cDNA clones encoding a high mobility group box protein that recognizes structural distortions to DNA caused by binding of the anticancer agent cisplatin. Proc Natl Acad Sci U S A 89:2307–2311PubMedPubMedCentralCrossRefGoogle Scholar
  9. Burglin TR, De Robertis EM (1987) The nuclear migration signal of Xenopus laevis nucleoplasmin. EMBO J 6:2617–2625PubMedPubMedCentralCrossRefGoogle Scholar
  10. Chen H, Li B, Workman JL (1994) A histone-binding protein, nucleoplasmin, stimulates transcription factor binding to nucleosomes and factor-induced nucleosome disassembly. EMBO J 13:380–390PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cotten M, Sealy L, Chalkley R (1986) Massive phosphorylation distinguishes Xenopus laevis nucleoplasmin isolated from oocytes or unfertilized eggs. Biochemistry 25:5063–5069PubMedCrossRefPubMedCentralGoogle Scholar
  12. D’Arcy S et al (2013) Chaperone Nap1 shields histone surfaces used in a nucleosome and can put H2A-H2B in an unconventional tetrameric form. Mol Cell 51:662–677PubMedCrossRefPubMedCentralGoogle Scholar
  13. Dong A, Zhu Y, Yu Y, Cao K, Sun C, Shen WH (2003) Regulation of biosynthesis and intracellular localization of rice and tobacco homologues of nucleosome assembly protein 1. Planta 216:561–570PubMedPubMedCentralGoogle Scholar
  14. Drane P, Ouararhni K, Depaux A, Shuaib M, Hamiche A (2010) The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 24:1253–1265PubMedPubMedCentralCrossRefGoogle Scholar
  15. Duroux M, Houben A, Ruzicka K, Friml J, Grasser KD (2004) The chromatin remodelling complex FACT associates with actively transcribed regions of the Arabidopsis genome. Plant J 40:660–671PubMedCrossRefPubMedCentralGoogle Scholar
  16. Dutta S, Akey IV, Dingwall C, Hartman KL, Laue T, Nolte RT, Head JF, Akey CW (2001) The crystal structure of nucleoplasmin-core: implications for histone binding and nucleosome assembly. Mol Cell 8:841–853PubMedCrossRefPubMedCentralGoogle Scholar
  17. Earnshaw WC, Honda BM, Laskey RA, Thomas JO (1980) Assembly of nucleosomes: the reaction involving X. laevis nucleoplasmin. Cell 21:373–383PubMedCrossRefPubMedCentralGoogle Scholar
  18. Edlich-Muth C, Artero JB, Callow P, Przewloka MR, Watson AA, Zhang W, Glover DM, Debski J, Dadlez M, Round AR, Forsyth VT, Laue ED (2015) The pentameric nucleoplasmin fold is present in Drosophila FKBP39 and a large number of chromatin-related proteins. J Mol Biol 427:1949–1963PubMedPubMedCentralCrossRefGoogle Scholar
  19. Elsaesser SJ, Allis CD (2010) HIRA and Daxx constitute two independent histone H3.3-containing predeposition complexes. Cold Spring Harb Symp Quant Biol 75:27–34PubMedCrossRefPubMedCentralGoogle Scholar
  20. Elsasser SJ (2013) A common structural theme in histone chaperones mimics interhistone contacts. Trends Biochem Sci 38:333–336PubMedCrossRefPubMedCentralGoogle Scholar
  21. Elsasser SJ, Huang H, Lewis PW, Chin JW, Allis CD, Patel DJ (2012) DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recognition. Nature 491:560–565PubMedPubMedCentralCrossRefGoogle Scholar
  22. English CM, Adkins MW, Carson JJ, Churchill ME, Tyler JK (2006) Structural basis for the histone chaperone activity of Asf1. Cell 127:495–508PubMedPubMedCentralCrossRefGoogle Scholar
  23. Formosa T, Eriksson P, Wittmeyer J, Ginn J, Yu Y, Stillman DJ (2001) Spt16-Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding factor SPN. EMBO J 20:3506–3517PubMedPubMedCentralCrossRefGoogle Scholar
  24. Franco A et al (2019) Structural insights into the ability of nucleoplasmin to assemble and chaperone histone octamers for DNA deposition. Sci Rep 9:9487PubMedPubMedCentralCrossRefGoogle Scholar
  25. Frehlick LJ, Eirin-Lopez JM, Jeffery ED, Hunt DF, Ausio J (2006) The characterization of amphibian nucleoplasmins yields new insight into their role in sperm chromatin remodeling. BMC Genomics 7:99PubMedPubMedCentralCrossRefGoogle Scholar
  26. Gill J et al (2009) Crystal structure of malaria parasite nucleosome assembly protein: distinct modes of protein localization and histone recognition. J Biol Chem 284:10076–10087PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gill J et al (2010) Structure, localization and histone binding properties of nuclear-associated nucleosome assembly protein from Plasmodium falciparum. Malar J 9:90PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hammond CM et al (2016) The histone chaperone Vps75 forms multiple oligomeric assemblies capable of mediating exchange between histone H3-H4 tetramers and Asf1-H3-H4 complexes. Nucleic Acids Res 44:6157–6172PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hansen DF, Zhou Z, Feng H, Miller Jenkins LM, Bai Y, Kay LE (2009) Binding kinetics of histone chaperone Chz1 and variant histone H2A.Z-H2B by relaxation dispersion NMR spectroscopy. J Mol Biol 387:1–9PubMedPubMedCentralCrossRefGoogle Scholar
  30. Hondele M, Stuwe T, Hassler M, Halbach F, Bowman A, Zhang ET, Nijmeijer B, Kotthoff C, Rybin V, Amlacher S, Hurt E, Ladurner AG (2013) Structural basis of histone H2A-H2B recognition by the essential chaperone FACT. Nature 499:111–114PubMedCrossRefGoogle Scholar
  31. Hsieh FK, Kulaeva OI, Patel SS, Dyer PN, Luger K, Reinberg D, Studitsky VM (2013) Histone chaperone FACT action during transcription through chromatin by RNA polymerase II. Proc Natl Acad Sci U S A 110:7654–7659PubMedPubMedCentralCrossRefGoogle Scholar
  32. Ishimi Y, Kikuchi A (1991) Identification and molecular cloning of yeast homolog of nucleosome assembly protein I which facilitates nucleosome assembly in vitro. J Biol Chem 266:7025–7029PubMedGoogle Scholar
  33. Ito T, Bulger M, Kobayashi R, Kadonaga JT (1996) Drosophila NAP-1 is a core histone chaperone that functions in ATP-facilitated assembly of regularly spaced nucleosomal arrays. Mol Cell Biol 16:3112–3124PubMedPubMedCentralCrossRefGoogle Scholar
  34. Kasai N, Tsunaka Y, Ohki I, Hirose S, Morikawa K, Tate S (2005) Solution structure of the HMG-box domain in the SSRP1 subunit of FACT. J Biomol NMR 32:83–88PubMedCrossRefGoogle Scholar
  35. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858PubMedPubMedCentralCrossRefGoogle Scholar
  36. Kemble DJ, Whitby FG, Robinson H, McCullough LL, Formosa T, Hill CP (2013) Structure of the Spt16 middle domain reveals functional features of the histone chaperone FACT. J Biol Chem 288:10188–10194PubMedPubMedCentralCrossRefGoogle Scholar
  37. Kemble DJ, McCullough LL, Whitby FG, Formosa T, Hill CP (2015) FACT Disrupts Nucleosome Structure by Binding H2A-H2B with Conserved Peptide Motifs. Mol Cell 60:294–306PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kozlowska M et al (2017) Nucleoplasmin-like domain of FKBP39 from Drosophila melanogaster forms a tetramer with partly disordered tentacle-like C-terminal segments. Sci Rep 7:40405PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kumar A, Kumar Singh A, Chandrakant Bobde R, Vasudevan D (2019) Structural characterization of Arabidopsis thaliana NAP1-related protein 2 (AtNRP2) and comparison with its homolog AtNRP1 molecules 24Google Scholar
  40. Laskey RA, Honda BM, Mills AD, Finch JT (1978) Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature 275:416–420PubMedCrossRefGoogle Scholar
  41. Le S, Davis C, Konopka JB, Sternglanz R (1997) Two new S-phase-specific genes from Saccharomyces cerevisiae. Yeast 13:1029–1042PubMedCrossRefGoogle Scholar
  42. Li F et al (2016) Structural insights into the interaction and disease mechanism of neurodegenerative disease-associated optineurin and TBK1 proteins. Nat Commun 7:12708PubMedPubMedCentralCrossRefGoogle Scholar
  43. Liu Z, Zhu Y, Gao J, Yu F, Dong A, Shen WH (2009) Molecular and reverse genetic characterization of nucleosome assembly protein1 (NAP1) genes unravels their function in transcription and nucleotide excision repair in Arabidopsis thaliana. Plant J 59:27–38PubMedCrossRefGoogle Scholar
  44. Liu J, Feng L, Li J, He Z (2015) Genetic and epigenetic control of plant heat responses. Front Plant Sci 6:267PubMedPubMedCentralGoogle Scholar
  45. Lolas IB et al (2010) The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2. Plant J 61:686–697PubMedCrossRefGoogle Scholar
  46. Lovell SC et al (2003) Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins 50:437–450CrossRefGoogle Scholar
  47. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260CrossRefGoogle Scholar
  48. Maksimov V, Nakamura M, Wildhaber T, Nanni P, Ramstrom M, Bergquist J, Hennig L (2016) The H3 chaperone function of NASP is conserved in Arabidopsis. Plant J 88:425–436PubMedCrossRefGoogle Scholar
  49. Marciano G, Huang DT (2016) Structure of the human histone chaperone FACT Spt16 N-terminal domain. Acta Crystallogr F Struct Biol Commun 72:121–128PubMedPubMedCentralCrossRefGoogle Scholar
  50. Marciano G, Da Vela S, Tria G, Svergun DI, Byron O, Huang DT (2018) Structure-specific recognition protein-1 (SSRP1) is an elongated homodimer that binds histones. J Biol Chem 293:10071–10083PubMedPubMedCentralCrossRefGoogle Scholar
  51. McCullough LL, Connell Z, Xin H, Studitsky VM, Feofanov AV, Valieva ME, Formosa T (2018) Functional roles of the DNA-binding HMGB domain in the histone chaperone FACT in nucleosome reorganization. J Biol Chem 293:6121–6133PubMedPubMedCentralCrossRefGoogle Scholar
  52. Michl-Holzinger P, Mortensen SA, Grasser KD (2019) The SSRP1 subunit of the histone chaperone FACT is required for seed dormancy in Arabidopsis. J Plant Physiol 236:105–108PubMedCrossRefGoogle Scholar
  53. Mitrea DM et al (2014) Structural polymorphism in the N-terminal oligomerization domain of NPM1. Proc Natl Acad Sci U S A 111:4466–4471PubMedPubMedCentralCrossRefGoogle Scholar
  54. Muto S, Senda M, Akai Y, Sato L, Suzuki T, Nagai R, Senda T, Horikoshi M (2007) Relationship between the structure of SET/TAF-Ibeta/INHAT and its histone chaperone activity. Proc Natl Acad Sci U S A 104:4285–4290PubMedPubMedCentralCrossRefGoogle Scholar
  55. Namboodiri VM, Dutta S, Akey IV, Head JF, Akey CW (2003) The crystal structure of Drosophila NLP-core provides insight into pentamer formation and histone binding. Structure 11:175–186PubMedCrossRefGoogle Scholar
  56. Namboodiri VM, Akey IV, Schmidt-Zachmann MS, Head JF, Akey CW (2004) The structure and function of Xenopus NO38-core, a histone chaperone in the nucleolus. Structure 12:2149–2160PubMedCrossRefGoogle Scholar
  57. Natsume R, Eitoku M, Akai Y, Sano N, Horikoshi M, Senda T (2007) Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature 446:338–341PubMedCrossRefGoogle Scholar
  58. Obri A, Ouararhni K, Papin C, Diebold ML, Padmanabhan K, Marek M, Stoll I, Roy L, Reilly PT, Mak TW, Dimitrov S, Romier C, Hamiche A (2014) ANP32E is a histone chaperone that removes H2A.Z from chromatin. Nature 505:648–653PubMedCrossRefGoogle Scholar
  59. Oliveira DV et al (2014) Histone chaperone FACT regulates homologous recombination by chromatin remodeling through interaction with RNF20. J Cell Sci 127:763–772PubMedCrossRefGoogle Scholar
  60. Onikubo T et al (2015) Developmentally regulated post-translational modification of nucleoplasmin controls histone sequestration and deposition. Cell Rep 10:1735–1748PubMedPubMedCentralCrossRefGoogle Scholar
  61. Orphanides G, Wu WH, Lane WS, Hampsey M, Reinberg D (1999) The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 400:284–288PubMedCrossRefPubMedCentralGoogle Scholar
  62. Padeken J, Mendiburo MJ, Chlamydas S, Schwarz HJ, Kremmer E, Heun P (2013) The nucleoplasmin homolog NLP mediates centromere clustering and anchoring to the nucleolus. Mol Cell 50:236–249PubMedCrossRefPubMedCentralGoogle Scholar
  63. Park YJ, Luger K (2006a) Structure and function of nucleosome assembly proteins. Biochem Cell Biol 84:549–558PubMedCrossRefPubMedCentralGoogle Scholar
  64. Park YJ, Luger K (2006b) The structure of nucleosome assembly protein 1. Proc Natl Acad Sci U S A 103:1248–1253PubMedPubMedCentralCrossRefGoogle Scholar
  65. Park YJ, Luger K (2008) Histone chaperones in nucleosome eviction and histone exchange. Curr Opin Struct Biol 18:282–289PubMedPubMedCentralCrossRefGoogle Scholar
  66. Park YJ, McBryant SJ, Luger K (2008) A beta-hairpin comprising the nuclear localization sequence sustains the self-associated states of nucleosome assembly protein 1. J Mol Biol 375:1076–1085PubMedCrossRefGoogle Scholar
  67. Pfab A, Breindl M, Grasser KD (2018a) The Arabidopsis histone chaperone FACT is required for stress-induced expression of anthocyanin biosynthetic genes. Plant Mol Biol 96:367–374PubMedCrossRefGoogle Scholar
  68. Pfab A, Gronlund JT, Holzinger P, Langst G, Grasser KD (2018b) The Arabidopsis histone chaperone FACT: role of the HMG-box domain of SSRP1. J Mol Biol 430:2747–2759PubMedCrossRefGoogle Scholar
  69. Philpott A, Leno GH, Laskey RA (1991) Sperm decondensation in Xenopus egg cytoplasm is mediated by nucleoplasmin. Cell 65:569–578PubMedCrossRefGoogle Scholar
  70. Platonova O, Akey IV, Head JF, Akey CW (2011) Crystal structure and function of human nucleoplasmin (npm2): a histone chaperone in oocytes and embryos. Biochemistry 50:8078–8089PubMedPubMedCentralCrossRefGoogle Scholar
  71. Ramos I, Martín-Benito J, Finn R, Bretaña L, Aloria K, Arizmendi JM, Ausió J, Muga A, Valpuesta JM, Prado A (2010) Nucleoplasmin binds histone H2A-H2B dimers through its distal face. J Biol Chem 285:33771–33778PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ray A, Lindahl E, Wallner B (2012) Improved model quality assessment using ProQ2. BMC Bioinformatics 13:224PubMedPubMedCentralCrossRefGoogle Scholar
  73. Reinberg D, Sims RJ 3rd (2006) de FACTo nucleosome dynamics. J Biol Chem 281:23297–23301PubMedCrossRefPubMedCentralGoogle Scholar
  74. Rottgers K, Krohn NM, Lichota J, Stemmer C, Merkle T, Grasser KD (2000) DNA-interactions and nuclear localisation of the chromosomal HMG domain protein SSRP1 from maize. Plant J 23:395–405PubMedCrossRefPubMedCentralGoogle Scholar
  75. Sarkar P, Zhang N, Bhattacharyya S, Salvador K, D’Arcy S (2019) Characterization of Caenorhabditis elegans nucleosome assembly protein 1 uncovers the role of acidic tails in histone binding. Biochemistry 58:108–113PubMedCrossRefPubMedCentralGoogle Scholar
  76. Smith S, Stillman B (1989) Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58:15–25PubMedCrossRefPubMedCentralGoogle Scholar
  77. Spiker S (1985) Plant chromatin structure. Ann Rev Plant Physio 36:235–253CrossRefGoogle Scholar
  78. Steer WM et al (2003) Xenopus nucleosome assembly protein becomes tissue-restricted during development and can alter the expression of specific genes. Mech Dev 120:1045–1057PubMedCrossRefPubMedCentralGoogle Scholar
  79. Stuwe T, Hothorn M, Lejeune E, Rybin V, Bortfeld M, Scheffzek K, Ladurner AG (2008) The FACT Spt16 "peptidase" domain is a histone H3-H4 binding module Proc Natl Acad Sci U S AGoogle Scholar
  80. Su D, Hu Q, Zhou H, Thompson JR, Xu RM, Zhang Z, Mer G (2011) Structure and histone binding properties of the Vps75-Rtt109 chaperone-lysine acetyltransferase complex J Biol ChemGoogle Scholar
  81. Sugawa H, Imamoto N, Wataya-Kaneda M, Uchida T (1985) Foreign protein can be carried into the nucleus of mammalian cell by conjugation with nucleoplasmin. Exp Cell Res 159:419–429PubMedCrossRefPubMedCentralGoogle Scholar
  82. Taneva SG et al (2008) Activation of nucleoplasmin, an oligomeric histone chaperone, challenges its stability. Biochemistry 47:13897–13906PubMedCrossRefPubMedCentralGoogle Scholar
  83. Tang Y et al (2008) Fungal Rtt109 histone acetyltransferase is an unexpected structural homolog of metazoan p300/CBP. Nat Struct Mol Biol 15:738–745PubMedPubMedCentralCrossRefGoogle Scholar
  84. Tang Y et al (2011) Structure of the Rtt109-AcCoA/Vps75 complex and implications for chaperone-mediated histone acetylation. Structure 19:221–231PubMedPubMedCentralCrossRefGoogle Scholar
  85. Thomas JO, Stott K (2012) H1 and HMGB1: modulators of chromatin structure. Biochem Soc Trans 40:341–346PubMedCrossRefPubMedCentralGoogle Scholar
  86. Tripathi AK, Singh K, Pareek A, Singla-Pareek SL (2015) Histone chaperones in Arabidopsis and rice: genome-wide identification, phylogeny, architecture and transcriptional regulation. BMC Plant Biol 15:42PubMedPubMedCentralCrossRefGoogle Scholar
  87. Tsunaka Y, Fujiwara Y, Oyama T, Hirose S, Morikawa K (2016) Integrated molecular mechanism directing nucleosome reorganization by human FACT. Genes Dev 30:673–686PubMedPubMedCentralCrossRefGoogle Scholar
  88. VanDemark AP, Blanksma M, Ferris E, Heroux A, Hill CP, Formosa T (2006) The structure of the yFACT Pob3-M domain, its interaction with the DNA replication factor RPA, and a potential role in nucleosome deposition. Mol Cell 22:363–374PubMedCrossRefPubMedCentralGoogle Scholar
  89. Wang T, Liu Y, Edwards G, Krzizike D, Scherman H, Luger K (2018) The histone chaperone FACT modulates nucleosome structure by tethering its components. Life Sci Alliance 1:e201800107PubMedPubMedCentralCrossRefGoogle Scholar
  90. Warren C, Shechter D (2017) Fly fishing for histones: catch and release by histone chaperone intrinsically disordered regions and acidic stretches. J Mol Biol 429:2401–2426PubMedPubMedCentralCrossRefGoogle Scholar
  91. Warren C et al (2017) Dynamic intramolecular regulation of the histone chaperone nucleoplasmin controls histone binding and release. Nat Commun 8:2215PubMedPubMedCentralCrossRefGoogle Scholar
  92. Winkler DD, Luger K (2011) The histone chaperone FACT: structural insights and mechanisms for nucleosome reorganization. J Biol Chem 286:18369–18374PubMedPubMedCentralCrossRefGoogle Scholar
  93. Wu WH et al (2005) Swc2 is a widely conserved H2AZ-binding module essential for ATP-dependent histone exchange. Nat Struct Mol Biol 12:1064–1071PubMedCrossRefPubMedCentralGoogle Scholar
  94. Yang J et al (2016) The histone chaperone FACT contributes to DNA replication-coupled nucleosome assembly. Cell Rep 14:1128–1141PubMedCrossRefPubMedCentralGoogle Scholar
  95. Yogavel M, Gill J, Sharma A (2009) Iodide-SAD, SIR and SIRAS phasing for structure solution of a nucleosome assembly protein. Acta Crystallogr D Biol Crystallogr 65:618–622PubMedCrossRefPubMedCentralGoogle Scholar
  96. Yoon HW, Kim MC, Lee SY, Hwang I, Bahk JD, Hong JC, Ishimi Y, Cho MJ (1995) Molecular cloning and functional characterization of a cDNA encoding nucleosome assembly protein 1 (NAP-1) from soybean. Mol Gen Genet 249:465–473PubMedCrossRefPubMedCentralGoogle Scholar
  97. Zhang M et al (2016) Structural insights into the association of Hif1 with histones H2A-H2B dimer and H3-H4 tetramer. Structure 24:1810–1820PubMedCrossRefPubMedCentralGoogle Scholar
  98. Zhou Z et al (2008) NMR structure of chaperone Chz1 complexed with histones H2A.Z-H2B. Nat Struct Mol Biol 15:868–869PubMedPubMedCentralCrossRefGoogle Scholar
  99. Zhou W, Zhu Y, Dong A, Shen WH (2015) Histone H2A/H2B chaperones: from molecules to chromatin-based functions in plant growth and development. Plant J 83:78–95PubMedCrossRefPubMedCentralGoogle Scholar
  100. Zhou W, Gao J, Ma J, Cao L, Zhang C, Zhu Y, Dong A, Shen WH (2016) Distinct roles of the histone chaperones NAP1 and NRP and the chromatin-remodeling factor INO80 in somatic homologous recombination in Arabidopsis thaliana. Plant J 88:397–410PubMedCrossRefPubMedCentralGoogle Scholar
  101. Zhu Y, Dong A, Meyer D, Pichon O, Renou JP, Cao K, Shen WH (2006) Arabidopsis NRP1 and NRP2 encode histone chaperones and are required for maintaining postembryonic root growth. Plant Cell 18:2879–2892PubMedPubMedCentralCrossRefGoogle Scholar
  102. Zhu Y et al (2017) The histone chaperone NRP1 interacts with WEREWOLF to activate GLABRA2 in Arabidopsis root hair development. Plant Cell 29:260–276PubMedPubMedCentralCrossRefGoogle Scholar
  103. Zlatanova J, Seebart C, Tomschik M (2007) Nap1: taking a closer look at a juggler protein of extraordinary skills. FASEB J 21:1294–1310PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Cell Stress Society International 2019

Authors and Affiliations

  1. 1.Institute of Life SciencesBhubaneswarIndia
  2. 2.Manipal Academy of Higher EducationManipalIndia

Personalised recommendations