Advertisement

Cell Stress and Chaperones

, Volume 24, Issue 6, pp 1197–1209 | Cite as

A robust strategy for proteomic identification of biomarkers of invasive phenotype complexed with extracellular heat shock proteins

  • Steven G. Griffiths
  • Alan Ezrin
  • Emily Jackson
  • Lisa Dewey
  • Alan A. DoucetteEmail author
Original Paper

Abstract

As an extension of their orchestration of intracellular pathways, secretion of extracellular heat shock proteins (HSPs) is an emerging paradigm of homeostasis imperative to multicellular organization. Extracellular HSP is axiomatic to the survival of cells during tumorigenesis; proportional representation of specific HSP family members is indicative of invasive potential and prognosis. Further significance has been added by the knowledge that all cancer-derived exosomes have surface-exposed HSPs that reflect the membrane topology of cells that secrete them. Extracellular HSPs are also characteristic of chronic inflammation and sepsis. Accordingly, interrogation of extracellular HSPs secreted from cell culture models may represent a facile means of identifying translational biomarker signatures for targeting in situ. In the current study, we evaluated a simple peptide-based multivalent HSP affinity approach using the Vn96 peptide for low speed pelleting of HSP complexes from bioreactor cultures of cell lines with varying invasive phenotype in xenotransplant models: U87 (glioblastoma multiforme; invasive); HELA (choriocarcinoma; minimally invasive); HEK293T (virally transformed immortalized; embryonic). Proteomic profiling by bottom-up mass spectrometry revealed a comprehensive range of candidate biomarkers including primary HSP ligands. HSP complexes were associated with additional chaperones of prognostic significance such as protein disulfide isomerases, as well as pleiotropic metabolic enzymes, established as proportionally reflective of invasive phenotype. Biomarkers of inflammatory and mechanotransductive phenotype were restricted to the most invasive cell model U87, including chitinase CHI3L1, lamin C, amyloid derivatives, and histone isoforms.

Keywords

Extracellular heat shock proteins Exosomes Vn96 Proteomics Mass spectrometry Biomarkers 

Notes

Funding information

This study was financially supported by a grant from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Supplementary material

12192_2019_1041_MOESM1_ESM.xlsx (343 kb)
ESM 1 (XLSX 343 kb)
12192_2019_1041_MOESM2_ESM.xlsx (421 kb)
ESM 2 (XLSX 420 kb)
12192_2019_1041_MOESM3_ESM.xlsx (338 kb)
ESM 3 (XLSX 338 kb)
12192_2019_1041_MOESM4_ESM.xlsx (14 kb)
ESM 4 (XLSX 13 kb)
12192_2019_1041_MOESM5_ESM.pdf (374 kb)
ESM 5 (PDF 374 kb)

References

  1. Bhatia A, O’Brien K, Chen M et al (2016) Keratinocyte-secreted heat shock protein-90alpha: Leading wound reepithelialization and closure. Adv Wound Care 5:176–184.  https://doi.org/10.1089/wound.2014.0620 CrossRefGoogle Scholar
  2. Bijnsdorp IV, Maxouri O, Kardar A, Schelfhorst T, Piersma SR, Pham TV, Vis A, van Moorselaar R, Jimenez CR (2017) Feasibility of urinary extracellular vesicle proteome profiling using a robust and simple, clinically applicable isolation method. J Extracell Vesicles 6:1313091.  https://doi.org/10.1080/20013078.2017.1313091 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brehme M, Voisine C, Rolland T, Wachi S, Soper JH, Zhu Y, Orton K, Villella A, Garza D, Vidal M, Ge H, Morimoto RI (2014) A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep 9:1135–1150.  https://doi.org/10.1016/j.celrep.2014.09.042 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Briassouli E, Goukos D, Daikos G, Apostolou K, Routsi C, Nanas S, Briassoulis G (2014) Glutamine suppresses Hsp72 not Hsp90α and is not inducing Th1, Th2, or Th17 cytokine responses in human septic PBMCs. Nutrition 30:1185–1194.  https://doi.org/10.1016/j.nut.2014.01.018 CrossRefPubMedGoogle Scholar
  5. Briassouli E, Tzanoudaki M, Goukos D et al (2015) Glutamine may repress the weak LPS and enhance the strong heat shock induction of monocyte and lymphocyte HSP72 proteins but may not modulate the HSP72 mRNA in patients with sepsis or trauma. Biomed Res Int 2015:1–15.  https://doi.org/10.1155/2015/806042 CrossRefGoogle Scholar
  6. Briassoulis G, Briassouli E, Fitrolaki D-M, Plati I, Apostolou K, Tavladaki T, Spanaki AM (2014) Heat shock protein 72 expressing stress in sepsis: unbridgeable gap between animal and human studies--a hypothetical “comparative” study. Biomed Res Int 2014:101023.  https://doi.org/10.1155/2014/101023 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Briassoulis G, Briassoulis P, Miliaraki M, Ilia S, Parlato M, Philippart F, Rouquette A, Moucadel V, Cavaillon JM, Misset B, Combined Approach for The eArly diagnosis of INfection in sepsis (CAPTAIN) study group (2019) Biomarker cruises in sepsis: who is the CAPTAIN? Discussion on “Circulating biomarkers may be unable to detect infection at the early phase of sepsis in ICU patients: the CAPTAIN prospective multicenter cohort study”. Intensive Care Med 45:132–133.  https://doi.org/10.1007/s00134-018-5451-y CrossRefPubMedGoogle Scholar
  8. Calderwood SK, Murshid A, Gong J (2012) heat shock proteins: conditional mediators of inflammation in tumor immunity. Front Immunol 3:75.  https://doi.org/10.3389/fimmu.2012.00075 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Capello M, Ferri-Borgogno S, Riganti C et al (2016) Targeting the Warburg effect in cancer cells through ENO1 knockdown rescues oxidative phosphorylation and induces growth arrest. Oncotarget 7:5598–5612.  https://doi.org/10.18632/oncotarget.6798 CrossRefPubMedGoogle Scholar
  10. Caruso Bavisotto C, Graziano F, Rappa F et al (2018) Exosomal chaperones and miRNAs in gliomagenesis: state-of-art and theranostics perspectives. Int J Mol Sci 19:2626.  https://doi.org/10.3390/ijms19092626 CrossRefPubMedCentralGoogle Scholar
  11. Castillo J, Bernard V, San Lucas FA, Allenson K, Capello M, Kim DU, Gascoyne P, Mulu FC, Stephens BM, Huang J, Wang H, Momin AA, Jacamo RO, Katz M, Wolff R, Javle M, Varadhachary G, Wistuba II, Hanash S, Maitra A, Alvarez H (2018) Surfaceome profiling enables isolation of cancer-specific exosomal cargo in liquid biopsies from pancreatic cancer patients. Ann Oncol 29:223–229.  https://doi.org/10.1093/annonc/mdx542 CrossRefPubMedGoogle Scholar
  12. Cavassani KA, Meza RJ, Habiel DM, Chen JF, Montes A, Tripathi M, Martins GA, Crother TR, You S, Hogaboam CM, Bhowmick N, Posadas EM (2018) Circulating monocytes from prostate cancer patients promote invasion and motility of epithelial cells. Cancer Med 7:4639–4649.  https://doi.org/10.1002/cam4.1695 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chaitanya G, Alexander JS, Babu P (2010) PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal 8:31.  https://doi.org/10.1186/1478-811X-8-31 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chatterjee N, Chatterjee A (2001) Role of alphavbeta3 integrin receptor in the invasive potential of human cervical cancer (SiHa) cells. J Environ Pathol Toxicol Oncol 20:211–221CrossRefGoogle Scholar
  15. Chen S-T, Pan T-L, Juan H-F, Chen TY, Lin YS, Huang CM (2008) Breast tumor microenvironment: proteomics highlights the treatments targeting secretome. J Proteome Res 7:1379–1387.  https://doi.org/10.1021/pr700745n CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chen R, Kang R, Fan X-G, Tang D (2014) Release and activity of histone in diseases. Cell Death Dis 5:e1370–e1370.  https://doi.org/10.1038/cddis.2014.337 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chen H-T, Zheng J-M, Zhang Y-Z, Yang M, Wang YL, Man XH, Chen Y, Cai QC, Li ZS (2017a) Overexpression of YKL-40 predicts poor prognosis in patients undergoing curative resection of pancreatic cancer. Pancreas 46:323–334.  https://doi.org/10.1097/MPA.0000000000000751 CrossRefPubMedGoogle Scholar
  18. Chen Y, Zhang S, Wang Q, Zhang X (2017b) Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein. J Hematol Oncol 10:36.  https://doi.org/10.1186/s13045-017-0408-0 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chen Y, Wang H, Tan C, Yan Y, Shen J, Huang Q, Xu T, Lin J, Chen J (2018) Expression of amyloid precursor-like protein 2 (APLP2) in glioblastoma is associated with patient prognosis. Folia Neuropathol 56:30–38.  https://doi.org/10.5114/fn.2018.74657 CrossRefPubMedGoogle Scholar
  20. Chiang Y-C, Lin H-W, Chang C-F et al (2015) Overexpression of CHI3L1 is associated with chemoresistance and poor outcome of epithelial ovarian carcinoma. Oncotarget 6:39740–39755.  https://doi.org/10.18632/oncotarget.5469 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cohen N, Shani O, Raz Y, Sharon Y, Hoffman D, Abramovitz L, Erez N (2017) Fibroblasts drive an immunosuppressive and growth-promoting microenvironment in breast cancer via secretion of Chitinase 3-like 1. Oncogene 36:4457–4468.  https://doi.org/10.1038/onc.2017.65 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Crouch B, Murphy H, Belonwu S, Martinez A, Gallagher J, Hall A, Soo MS, Lee M, Hughes P, Haystead T, Ramanujam N (2017) Leveraging ectopic Hsp90 expression to assay the presence of tumor cells and aggressive tumor phenotypes in breast specimens. Sci Rep 7:17487.  https://doi.org/10.1038/s41598-017-17832-x CrossRefPubMedPubMedCentralGoogle Scholar
  23. Crowe LB, Hughes PF, Alcorta DA, Osada T, Smith AP, Totzke J, Loiselle DR, Lutz ID, Gargesha M, Roy D, Roques J, Darr D, Lyerly HK, Spector NL, Haystead TAJ (2017) A fluorescent Hsp90 probe demonstrates the unique association between extracellular Hsp90 and malignancy in vivo. ACS Chem Biol 12:1047–1055.  https://doi.org/10.1021/acschembio.7b00006 CrossRefPubMedGoogle Scholar
  24. Cui Y, Niu M, Zhang X, Zhong Z, Wang J, Pang D (2015) High expression of valosin-containing protein predicts poor prognosis in patients with breast carcinoma. Tumor Biol 36:9919–9927.  https://doi.org/10.1007/s13277-015-3748-9 CrossRefGoogle Scholar
  25. Dai J, Ji Y, Wang W, Kim D, Fai LY, Wang L, Luo J, Zhang Z (2017) Loss of fructose-1,6-bisphosphatase induces glycolysis and promotes apoptosis resistance of cancer stem-like cells: an important role in hexavalent chromium-induced carcinogenesis. Toxicol Appl Pharmacol 331:164–173.  https://doi.org/10.1016/j.taap.2017.06.014 CrossRefPubMedPubMedCentralGoogle Scholar
  26. De Maio A, Vazquez D (2013) Extracellular heat shock proteins: a new location, a new function. Shock 40:239–246.  https://doi.org/10.1097/SHK.0b013e3182a185ab CrossRefPubMedPubMedCentralGoogle Scholar
  27. Debeb BG, Zhang X, Krishnamurthy S, Gao H, Cohen E, Li L, Rodriguez AA, Landis MD, Lucci A, Ueno NT, Robertson F, Xu W, Lacerda L, Buchholz TA, Cristofanilli M, Reuben JM, Lewis MT, Woodward WA (2010) Characterizing cancer cells with cancer stem cell-like features in 293T human embryonic kidney cells. Mol Cancer 9:180.  https://doi.org/10.1186/1476-4598-9-180 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Diamandis EP (2012) The failure of protein cancer biomarkers to reach the clinic: why, and what can be done to address the problem? BMC Med 10:87.  https://doi.org/10.1186/1741-7015-10-87 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Dong G, Mao Q, Xia W, Xu Y, Wang J, Xu L, Jiang F (2016) PKM2 and cancer: the function of PKM2 beyond glycolysis. Oncol Lett 11:1980–1986.  https://doi.org/10.3892/ol.2016.4168 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Duriez PJ, Shah GM (1997) Cleavage of poly(ADP-ribose) polymerase: a sensitive parameter to study cell death. Biochem Cell Biol 75:337–349CrossRefGoogle Scholar
  31. Edkins AL, Price JT, Pockley AG, Blatch GL (2018) Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective. Philos Trans R Soc B Biol Sci 373:20160521.  https://doi.org/10.1098/rstb.2016.0521 CrossRefGoogle Scholar
  32. Fitrolaki MD, Dimitriou H, Venihaki M, Katrinaki M, Ilia S, Briassoulis G (2016) Increased extracellular heat shock protein 90α in severe sepsis and SIRS associated with multiple organ failure and related to acute inflammatory-metabolic stress response in children. Medicine (Baltimore) 95:e4651.  https://doi.org/10.1097/MD.0000000000004651 CrossRefGoogle Scholar
  33. Fu Q, Jiang Y, Zhang D, Liu X, Guo J, Zhao J (2016) Valosin-containing protein (VCP) promotes the growth, invasion, and metastasis of colorectal cancer through activation of STAT3 signaling. Mol Cell Biochem 418:189–198.  https://doi.org/10.1007/s11010-016-2746-6 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gandhi P, Khare R, VasudevGulwani H, Kaur S (2018) Circulatory YKL-40 & NLR: underestimated prognostic indicators in diffuse glioma. Int J Mol Cell Med 7:111–118.  https://doi.org/10.22088/IJMCM.BUMS.7.2.111 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gastpar R, Gehrmann M, Bausero MA, Asea A, Gross C, Schroeder JA, Multhoff G (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65:5238–5247.  https://doi.org/10.1158/0008-5472.CAN-04-3804 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ghaderi S, Ahmadian S, Soheili Z-S, Ahmadieh H, Samiei S, Kheitan S, Pirmardan ER (2018) AAV delivery of GRP78/BiP promotes adaptation of human RPE cell to ER stress. J Cell Biochem 119:1355–1367.  https://doi.org/10.1002/jcb.26296 CrossRefPubMedGoogle Scholar
  37. Ghosh A, Davey M, Chute IC, Griffiths SG, Lewis S, Chacko S, Barnett D, Crapoulet N, Fournier S, Joy A, Caissie MC, Ferguson AD, Daigle M, Meli MV, Lewis SM, Ouellette RJ (2014) Rapid isolation of extracellular vesicles from cell culture and biological fluids using a synthetic peptide with specific affinity for heat shock proteins. PLoS One 9:e110443.  https://doi.org/10.1371/journal.pone.0110443 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Gober MD, Wales SQ, Aurelian L (2005) Herpes simplex virus type 2 encodes a heat shock protein homologue with apoptosis regulatory functions. Front Biosci. 10:2788–2803CrossRefGoogle Scholar
  39. Gobbo J, Marcion G, Cordonnier M et al (2016) Restoring anticancer immune response by targeting tumor-derived exosomes with a HSP70 peptide aptamer. J Natl Cancer Inst 108:djv330.  https://doi.org/10.1093/jnci/djv330 CrossRefGoogle Scholar
  40. González-Cruz RD, Dahl KN, Darling EM (2018) The emerging role of lamin C as an important LMNA isoform in mechanophenotype. Front Cell Dev Biol 6:151.  https://doi.org/10.3389/fcell.2018.00151 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Grandjean G, de Jong PR, James BP, Koh MY, Lemos R, Kingston J, Aleshin A, Bankston LA, Miller CP, Cho EJ, Edupuganti R, Devkota A, Stancu G, Liddington RC, Dalby K, Powis G (2016) Definition of a novel feed-forward mechanism for glycolysis-HIF1α signaling in hypoxic tumors highlights aldolase A as a therapeutic target. Cancer Res 76:4259–4269.  https://doi.org/10.1158/0008-5472.CAN-16-0401 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Griffiths S, Lewis S, Belkaid A et al (2011) Peptides with affinity for cell-derived vesicles, presented at: First International Workshop on Exosomes, Paris, France, January 19-22.Google Scholar
  43. Griffiths S, Cormier M, Clayton A, Doucette A (2017) Differential proteome analysis of extracellular vesicles from breast cancer cell lines by chaperone affinity enrichment. Proteomes 5:25.  https://doi.org/10.3390/proteomes5040025 CrossRefPubMedCentralGoogle Scholar
  44. Gugliotta G, Sudo M, Cao Q, Lin DC, Sun H, Takao S, le Moigne R, Rolfe M, Gery S, Müschen M, Cavo M, Koeffler HP (2017) Valosin-containing protein/p97 as a novel therapeutic target in acute lymphoblastic leukemia. Neoplasia 19:750–761.  https://doi.org/10.1016/j.neo.2017.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hadizadeh Esfahani A, Sverchkova A, Saez-Rodriguez J, Schuppert AA, Brehme M (2018) A systematic atlas of chaperome deregulation topologies across the human cancer landscape. PLoS Comput Biol 14:e1005890.  https://doi.org/10.1371/journal.pcbi.1005890 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hall S, Janelidze S, Surova Y, Widner H, Zetterberg H, Hansson O (2018) Cerebrospinal fluid concentrations of inflammatory markers in Parkinson’s disease and atypical parkinsonian disorders. Sci Rep 8:13276.  https://doi.org/10.1038/s41598-018-31517-z CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hamilton G, Rath B, Burghuber O (2015) Chitinase-3-like-1/YKL-40 as marker of circulating tumor cells. Transl Lung Cancer Res 4:287–291.  https://doi.org/10.3978/j.issn.2218-6751.2015.04.04 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hariton-Gazal E, Rosenbluh J, Graessmann A, Gilon C, Loyter A (2003) Direct translocation of histone molecules across cell membranes. J Cell Sci 116:4577–4586.  https://doi.org/10.1242/jcs.00757 CrossRefPubMedGoogle Scholar
  49. Jeet V, Tevz G, Lehman M, Hollier B, Nelson C (2014) Elevated YKL40 is associated with advanced prostate cancer (PCa) and positively regulates invasion and migration of PCa cells. Endocr Relat Cancer 21:723–737.  https://doi.org/10.1530/ERC-14-0267 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Jeffery CJ (2018) Protein moonlighting: what is it, and why is it important? Philos Trans R Soc B Biol Sci 373:20160523.  https://doi.org/10.1098/rstb.2016.0523 CrossRefGoogle Scholar
  51. Jiang P, Gan M, Yen S-H, McLean P, Dickson DW (2017) Histones facilitate α-synuclein aggregation during neuronal apoptosis. Acta Neuropathol 133:547–558.  https://doi.org/10.1007/s00401-016-1660-z CrossRefPubMedGoogle Scholar
  52. Jurisic V, Radenkovic S, Konjevic G (2015) The actual role of LDH as tumor marker, biochemical and clinical aspects. Adv Exp Med Biol 867:115–124.  https://doi.org/10.1007/978-94-017-7215-0_8 CrossRefPubMedGoogle Scholar
  53. Kakkar V, Meister-Broekema M, Minoia M, Carra S, Kampinga HH (2014) Barcoding heat shock proteins to human diseases: looking beyond the heat shock response. Dis Model Mech 7:421–434.  https://doi.org/10.1242/dmm.014563 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kato J, Svensson CI (2015) Role of extracellular damage-associated molecular pattern molecules (damps) as mediators of persistent pain. Prog Mol Biol Transl Sci 131:251–279.  https://doi.org/10.1016/bs.pmbts.2014.11.014 CrossRefPubMedGoogle Scholar
  55. Khan IU, Wallin R, Gupta RS, Kammer GM (1998) Protein kinase A-catalyzed phosphorylation of heat shock protein 60 chaperone regulates its attachment to histone 2B in the T lymphocyte plasma membrane. Proc Natl Acad Sci U S A 95:10425–10430.  https://doi.org/10.1073/pnas.95.18.10425 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Khandia R, Munjal AK, Iqbal HMN, Dhama K (2017) Heat shock proteins: therapeutic perspectives in inflammatory disorders. Recent Patents Inflamm Allergy Drug Discov 10:94–104.  https://doi.org/10.2174/1872213X10666161213163301 CrossRefGoogle Scholar
  57. Klinke DJ (2016) Eavesdropping on altered cell-to-cell signaling in cancer by secretome profiling. Mol Cell Oncol 3:e1029061.  https://doi.org/10.1080/23723556.2015.1029061 CrossRefPubMedGoogle Scholar
  58. Klinke DJ, Kulkarni YM, Wu Y, Byrne-Hoffman C (2014) Inferring alterations in cell-to-cell communication in HER2+ breast cancer using secretome profiling of three cell models. Biotechnol Bioeng 111:1853–1863.  https://doi.org/10.1002/bit.25238 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Knol JC, de Reus I, Schelfhorst T, Beekhof R, de Wit M, Piersma SR, Pham TV, Smit EF, Verheul HMW, Jiménez CR (2016) Peptide-mediated ‘miniprep’ isolation of extracellular vesicles is suitable for high-throughput proteomics. EuPA Open Proteomics 11:11–15.  https://doi.org/10.1016/j.euprot.2016.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Kobiyama K, Kawashima A, Jounai N, Takeshita F, Ishii KJ, Ito T, Suzuki K (2013) Role of extrachromosomal histone H2B on recognition of DNA viruses and cell damage. Front Genet 4:91.  https://doi.org/10.3389/fgene.2013.00091 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kuo LJ, Yang L-X (2008) Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In Vivo 22:305–309PubMedGoogle Scholar
  62. Lee E, Lee DH (2017) Emerging roles of protein disulfide isomerase in cancer. BMB Rep 50:401–410.  https://doi.org/10.5483/bmbrep.2017.50.8.107 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Libreros S, Iragavarapu-Charyulu V (2015) YKL-40/CHI3L1 drives inflammation on the road of tumor progression. J Leukoc Biol 98:931–936.  https://doi.org/10.1189/jlb.3VMR0415-142R CrossRefPubMedPubMedCentralGoogle Scholar
  64. Lim S, Yoo BK, Kim H-S, Gilmore HL, Lee Y, Lee HP, Kim SJ, Letterio J, Lee HG (2014) Amyloid-β precursor protein promotes cell proliferation and motility of advanced breast cancer. BMC Cancer 14:928.  https://doi.org/10.1186/1471-2407-14-928 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Liu H, Sadygov R, Yates J (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201.  https://doi.org/10.1021/AC0498563 CrossRefPubMedGoogle Scholar
  66. Llorens F, Thüne K, Tahir W, Kanata E, Diaz-Lucena D, Xanthopoulos K, Kovatsi E, Pleschka C, Garcia-Esparcia P, Schmitz M, Ozbay D, Correia S, Correia Â, Milosevic I, Andréoletti O, Fernández-Borges N, Vorberg IM, Glatzel M, Sklaviadis T, Torres JM, Krasemann S, Sánchez-Valle R, Ferrer I, Zerr I (2017) YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias. Mol Neurodegener 12:83.  https://doi.org/10.1186/s13024-017-0226-4 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Marsman G, Zeerleder S, Luken BM (2016) Extracellular histones, cell-free DNA, or nucleosomes: differences in immunostimulation. Cell Death Dis 7:e2518.  https://doi.org/10.1038/cddis.2016.410 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Min K-W, Lee S-H, Baek SJ (2016) Moonlighting proteins in cancer. Cancer Lett 370:108–116.  https://doi.org/10.1016/j.canlet.2015.09.022 CrossRefPubMedGoogle Scholar
  69. Moir RD, Lathe R, Tanzi RE (2018) The antimicrobial protection hypothesis of Alzheimer’s disease. Alzheimers Dement 14:1602–1614.  https://doi.org/10.1016/j.jalz.2018.06.3040 CrossRefPubMedGoogle Scholar
  70. Neckers L, Blagg B, Haystead T, Trepel JB, Whitesell L, Picard D (2018) Methods to validate Hsp90 inhibitor specificity, to identify off-target effects, and to rethink approaches for further clinical development. Cell Stress Chaperones 23:467–482.  https://doi.org/10.1007/s12192-018-0877-2 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Niforou K, Cheimonidou C, Trougakos IP (2014) Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol 2:323–332.  https://doi.org/10.1016/j.redox.2014.01.017 CrossRefPubMedPubMedCentralGoogle Scholar
  72. O’Brien K, Bhatia A, Tsen F et al (2014) Identification of the critical therapeutic entity in secreted Hsp90α that promotes wound healing in newly re-standardized healthy and diabetic pig models. PLoS One 9:e113956.  https://doi.org/10.1371/journal.pone.0113956 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Orton DJ, Doucette AA (2013) A universal, high recovery assay for protein quantitation through temperature programmed liquid chromatography (TPLC). J Chromatogr B Anal Technol Biomed Life Sci 921–922.  https://doi.org/10.1016/j.jchromb.2013.01.021 CrossRefGoogle Scholar
  74. Østergaard O, Nielsen CT, Tanassi JT, Iversen LV, Jacobsen S, Heegaard NHH (2017) Distinct proteome pathology of circulating microparticles in systemic lupus erythematosus. Clin Proteomics 14:23–13.  https://doi.org/10.1186/s12014-017-9159-8 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Palla V-V, Karaolanis G, Katafigiotis I et al (2017) gamma-H2AX: can it be established as a classical cancer prognostic factor? Tumor Biol 39:101042831769593.  https://doi.org/10.1177/1010428317695931 CrossRefGoogle Scholar
  76. Palotai R, Szalay MS, Csermely P (2007) Chaperones as integrators of cellular networks: changes of cellular integrity in stress and diseases. IUBMB Life 60:10–18.  https://doi.org/10.1002/iub.8 CrossRefGoogle Scholar
  77. Pandey P, Sliker B, Peters HL et al (2016) Amyloid precursor protein and amyloid precursor-like protein 2 in cancer. Oncotarget 7:19430–19444.  https://doi.org/10.18632/oncotarget.7103 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Papadopoulos P, Pistiki A, Theodorakopoulou M, Christodoulopoulou T, Damoraki G, Goukos D, Briassouli E, Dimopoulou I, Armaganidis A, Nanas S, Briassoulis G, Tsiodras S (2017) Immunoparalysis: clinical and immunological associations in SIRS and severe sepsis patients. Cytokine 92:83–92.  https://doi.org/10.1016/j.cyto.2017.01.012 CrossRefPubMedGoogle Scholar
  79. Parseghian MH, Luhrs KA (2006) Beyond the walls of the nucleus: the role of histones in cellular signaling and innate immunity. Biochem Cell Biol 84:589–595.  https://doi.org/10.1139/o06-082 CrossRefPubMedGoogle Scholar
  80. Perrucci GL, Gowran A, Zanobini M et al (2015) Peptidyl-prolyl isomerases: a full cast of critical actors in cardiovascular diseases. Cardiovasc Res 106:353–364.  https://doi.org/10.1093/cvr/cvv096 CrossRefPubMedGoogle Scholar
  81. Plesca D, Mazumder S, Almasan A (2008) DNA damage response and apoptosis. Methods Enzymol 446:107–122.  https://doi.org/10.1016/S0076-6879(08)01606-6 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Principe M, Ceruti P, Shih N-Y et al (2015) Targeting of surface alpha-enolase inhibits the invasiveness of pancreatic cancer cells. Oncotarget 6:11098–11113.  https://doi.org/10.18632/oncotarget.3572 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Ramsby ML, Makowski GS (1999) Differential detergent fractionation of eukaryotic cells: analysis by two-dimensional gel electrophoresis. In: 2-D proteome analysis protocols. Humana Press, Totowa, pp 53–66.  https://doi.org/10.1385/1-59259-584-7:53 CrossRefGoogle Scholar
  84. Rodvold JJ, Chiu KT, Hiramatsu N et al (2017) Intercellular transmission of the unfolded protein response promotes survival and drug resistance in cancer cells. Sci Signal 10:eaah7177.  https://doi.org/10.1126/scisignal.aah7177 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Ściborski K, Kuliczkowski W, Karolko B et al (2018) Plasma level of YKL-40 correlates with the severity of coronary atherosclerosis assessed with SYNTAX score. Polish Arch Intern Med 128:644–648.  https://doi.org/10.20452/pamw.4345 CrossRefGoogle Scholar
  86. Sharma A, Singh K, Almasan A (2012) Histone H2AX phosphorylation: a marker for DNA damage. Methods Mol Biol 920:613–626.  https://doi.org/10.1007/978-1-61779-998-3_40 CrossRefPubMedGoogle Scholar
  87. Shevchenko A, Tomas H, Havli J et al (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860.  https://doi.org/10.1038/nprot.2006.468 CrossRefPubMedGoogle Scholar
  88. Shevtsov M, Huile G, Multhoff G (2018) Membrane heat shock protein 70: a theranostic target for cancer therapy. Philos Trans R Soc B Biol Sci 373:20160526.  https://doi.org/10.1098/rstb.2016.0526 CrossRefGoogle Scholar
  89. Sirover MA (2018) Pleiotropic effects of moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in cancer progression, invasiveness, and metastases. Cancer Metastasis Rev 37:665–676.  https://doi.org/10.1007/s10555-018-9764-7 CrossRefPubMedGoogle Scholar
  90. Snaebjornsson MT, Schulze A (2018) Non-canonical functions of enzymes facilitate cross-talk between cell metabolic and regulatory pathways. Exp Mol Med 50:34.  https://doi.org/10.1038/s12276-018-0065-6 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Steiner N, Borjan B, Hajek R et al (2017) Expression and release of glucose-regulated protein-78 (GRP78) in multiple myeloma. Oncotarget 8:56243–56254.  https://doi.org/10.18632/oncotarget.17353 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Stifani S (2018) The multiple roles of peptidyl prolyl isomerases in brain cancer. Biomolecules 8:112.  https://doi.org/10.3390/biom8040112 CrossRefPubMedCentralGoogle Scholar
  93. Strojnik T, Duh D, Lah TT (2017) Prevalence of neurotropic viruses in malignant glioma and their onco-modulatory potential. In Vivo (Brooklyn) 31:221–230.  https://doi.org/10.21873/invivo.11049 CrossRefGoogle Scholar
  94. Szatmary P, Huang W, Criddle D, Tepikin A, Sutton R (2018) Biology, role and therapeutic potential of circulating histones in acute inflammatory disorders. J Cell Mol Med 22:4617–4629.  https://doi.org/10.1111/jcmm.13797 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Tai W, Guzman ML, Chiosis G (2016) The epichaperome: the power of many as the power of one. Oncoscience 3:266.  https://doi.org/10.18632/oncoscience.321 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Thomaidou S, Zaldumbide A, Roep BO (2018) Islet stress, degradation and autoimmunity. Diabetes Obes Metab 20:88–94.  https://doi.org/10.1111/dom.13387 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Ucker DS, Jain MR, Pattabiraman G, Palasiewicz K, Birge RB, Li H (2012) Externalized glycolytic enzymes are novel, conserved, and early biomarkers of apoptosis. J Biol Chem 287:10325–10343.  https://doi.org/10.1074/jbc.M111.314971 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Vardas K, Apostolou K, Briassouli E, Goukos D, Psarra K, Botoula E, Tsagarakis S, Magira E, Routsi C, Nanas S, Briassoulis G (2014) Early response roles for prolactin cortisol and circulating and cellular levels of heat shock proteins 72 and 90α in severe sepsis and SIRS. Biomed Res Int 2014:803561.  https://doi.org/10.1155/2014/803561 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Vardas K, Ilia S, Sertedaki A, Charmandari E, Briassouli E, Goukos D, Apostolou K, Psarra K, Botoula E, Tsagarakis S, Magira E, Routsi C, Stratakis CA, Nanas S, Briassoulis G (2017) Increased glucocorticoid receptor expression in sepsis is related to heat shock proteins, cytokines, and cortisol and is associated with increased mortality. Intensive Care Med Exp 5:10.  https://doi.org/10.1186/s40635-017-0123-8 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Vekaria PH, Home T, Weir S et al (2016) Targeting p97 to disrupt protein homeostasis in cancer. Front Oncol 6:181.  https://doi.org/10.3389/fonc.2016.00181 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Wang X, Venable J, LaPointe P, Hutt DM, Koulov AV, Coppinger J, Gurkan C, Kellner W, Matteson J, Plutner H, Riordan JR, Kelly JW, Yates JR 3rd, Balch WE (2006) Hsp90 cochaperone Aha1 downregulation rescues misfolding of cftr in cystic fibrosis. Cell 127:803–815.  https://doi.org/10.1016/j.cell.2006.09.043 CrossRefPubMedGoogle Scholar
  102. Wang J, Ying G, Wang J, Jung Y, Lu J, Zhu J, Pienta KJ, Taichman RS (2010) Characterization of phosphoglycerate kinase-1 expression of stromal cells derived from tumor microenvironment in prostate cancer progression. Cancer Res 70:471–480.  https://doi.org/10.1158/0008-5472.CAN-09-2863 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Wang J, Lv H, Luo Z, Mou S, Liu J, Liu C, Deng S, Jiang Y, Lin J, Wu C, Liu X, He J, Jiang D (2018) Plasma YKL-40 and NGAL are useful in distinguishing ACO from asthma and COPD. Respir Res 19:47.  https://doi.org/10.1186/s12931-018-0755-6 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Wang T, Rodina A, Dunphy MP, Corben A, Modi S, Guzman ML, Gewirth DT, Chiosis G (2019) Chaperome heterogeneity and its implications for cancer study and treatment. J Biol Chem 294:2162–2179.  https://doi.org/10.1074/jbc.REV118.002811 CrossRefPubMedGoogle Scholar
  105. Wubbolts R, Leckie RS, Veenhuizen PT, Schwarzmann G, Möbius W, Hoernschemeyer J, Slot JW, Geuze HJ, Stoorvogel W (2003) Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem 278:10963–10972.  https://doi.org/10.1074/jbc.M207550200 CrossRefPubMedGoogle Scholar
  106. Yu T, MacPhail SH, Banáth JP, Klokov D, Olive PL (2006) Endogenous expression of phosphorylated histone H2AX in tumors in relation to DNA double-strand breaks and genomic instability. DNA Repair (Amst) 5:935–946.  https://doi.org/10.1016/j.dnarep.2006.05.040 CrossRefGoogle Scholar
  107. Zannikou M, Bellou S, Eliades P, Hatzioannou A, Mantzaris MD, Carayanniotis G, Avrameas S, Lymberi P (2016) DNA-histone complexes as ligands amplify cell penetration and nuclear targeting of anti-DNA antibodies via energy-independent mechanisms. Immunology 147:73–81.  https://doi.org/10.1111/imm.12542 CrossRefPubMedGoogle Scholar
  108. Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z, Chen H, Mark MT, Molina H, Martin AB, Bojmar L, Fang J, Rampersaud S, Hoshino A, Matei I, Kenific CM, Nakajima M, Mutvei AP, Sansone P, Buehring W, Wang H, Jimenez JP, Cohen-Gould L, Paknejad N, Brendel M, Manova-Todorova K, Magalhães A, Ferreira JA, Osório H, Silva AM, Massey A, Cubillos-Ruiz JR, Galletti G, Giannakakou P, Cuervo AM, Blenis J, Schwartz R, Brady MS, Peinado H, Bromberg J, Matsui H, Reis CA, Lyden D (2018) Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol 20:332–343.  https://doi.org/10.1038/s41556-018-0040-4 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Zhang Q, Higginbotham JN, Jeppesen DK et al (2019) Transfer of functional cargo in exomeres. Cell Rep 27:940–954.e6.  https://doi.org/10.1016/j.celrep.2019.01.009 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Zhao Y, Xiao A, diPierro CG, Carpenter JE, Abdel-Fattah R, Redpath GT, Lopes MB, Hussaini IM (2010) An extensive invasive intracranial human glioblastoma xenograft model. Am J Pathol 176:3032–3049.  https://doi.org/10.2353/ajpath.2010.090571 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Ziegler YS, Moresco JJ, Yates JR et al (2016) Integration of breast cancer secretomes with clinical data elucidates potential serum markers for disease detection, diagnosis, and prognosis. PLoS One 11:e0158296.  https://doi.org/10.1371/journal.pone.0158296 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Zijlstra A, Di Vizio D (2018) Size matters in nanoscale communication. Nat Cell Biol 20:228–230.  https://doi.org/10.1038/s41556-018-0049-8 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Zou H, Wen C, Peng Z, Shao YΥ, Hu L, Li S, Li C, Zhou HH (2017) P4HB and PDIA3 are associated with tumor progression and therapeutic outcome of diffuse gliomas. Oncol Rep 39:501–510.  https://doi.org/10.3892/or.2017.6134 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Cell Stress Society International 2019

Authors and Affiliations

  1. 1.X0S0MEMonctonCanada
  2. 2.NX Development CorporationLouisvilleUSA
  3. 3.David H. Murdock Research InstituteKannapolisUSA
  4. 4.Dalhousie UniversityHalifaxCanada

Personalised recommendations