Advertisement

Co-expression of CCT subunits hints at TRiC assembly

  • Oksana A. SergeevaEmail author
  • Cameron Haase-Pettingell
  • Jonathan A. King
Original Paper

Abstract

The eukaryotic cytosolic chaperonin, t-complex polypeptide 1 (TCP-1) ring complex or TRiC, is responsible for folding a tenth of the proteins in the cell. TRiC is a double-ringed barrel with each ring composed of eight different CCT (chaperonin containing TCP-1) subunits. In order for the subunits to assemble together into mature TRiC, which is believed to contain one and only one of each of these subunits per ring, they must be translated from different chromosomes, correctly folded and assembled. When expressed alone in Escherichia coli, the subunits CCT4 and CCT5, interestingly, form TRiC-like homo-oligomeric rings. To explore potential subunit-subunit interactions, we co-expressed these homo-oligomerizing CCT4 and CCT5 subunits or the archaeal chaperonin Mm-Cpn (Methanococcus maripaludis chaperonin) with CCT1-8, one at a time. We found that CCT5 shifted all of the CCT subunits, with the exception of CCT6, into double-barrel TRiC-like complexes, while CCT4 only interacted with CCT5 and CCT8 to form chaperonin rings. We hypothesize that these specific interactions may be due to the formation of hetero-oligomers in E. coli, although more work is needed for validation. We also observed the interaction of CCT5 and Mm-Cpn with smaller fragments of the CCT subunits, confirming their intrinsic chaperone activity. Based on this hetero-oligomer data, we propose that TRiC assembly relies on subunit exchange with some stable homo-oligomers, possibly CCT5, as base assembly units. Eventually, analysis of CCT arrangement in various tissues and at different developmental times is anticipated to provide additional insight on TRiC assembly and CCT subunit composition.

Keywords

Chaperonin TRiC CCT Assembly Hetero-oligomer 

Notes

Acknowledgments

We would like to thank the members of the Jonathan King lab for helpful discussions on this topic and the members of Gisou van der Goot lab for critical reading of this manuscript.

References

  1. Archibald JM, Logsdon JM Jr, Doolittle WF (1999) Recurrent paralogy in the evolution of archaeal chaperonins. Curr Biol 9:1053–1056CrossRefGoogle Scholar
  2. Archibald JM, Logsdon JM, Doolittle WF (2000) Origin and evolution of eukaryotic chaperonins: phylogenetic evidence for ancient duplications in CCT genes. Mol Biol Evol 17:1456–1466.  https://doi.org/10.1093/oxfordjournals.molbev.a026246 CrossRefGoogle Scholar
  3. Blanc M, David F, Abrami L, Migliozzi D, Armand F, Bürgi J, van der Goot FG (2015) SwissPalm: protein palmitoylation database. F1000Res 4:261.  https://doi.org/10.12688/f1000research.6464.1 CrossRefGoogle Scholar
  4. Boudiaf-Benmammar C, Cresteil T, Melki R (2013) The cytosolic chaperonin CCT/TRiC and cancer cell proliferation. PLoS One 8:e60895.  https://doi.org/10.1371/journal.pone.0060895 CrossRefGoogle Scholar
  5. Bukach OV, Glukhova AE, Seit-Nebi AS, Gusev NB (2009) Heterooligomeric complexes formed by human small heat shock proteins HspB1 (Hsp27) and HspB6 (Hsp20). Biochim Biophys Acta 1794:486–495.  https://doi.org/10.1016/j.bbapap.2008.11.010 CrossRefGoogle Scholar
  6. Chamberlain LH, Shipston MJ (2015) The physiology of protein S-acylation. Physiol Rev 95:341–376.  https://doi.org/10.1152/physrev.00032.2014 CrossRefGoogle Scholar
  7. Cong Y, Baker ML, Jakana J, Woolford D, Miller EJ, Reissmann S, Kumar RN, Redding-Johanson AM, Batth TS, Mukhopadhyay A, Ludtke SJ, Frydman J, Chiu W (2010) 4.0-A resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement. Proc Natl Acad Sci 107:4967–4972.  https://doi.org/10.1073/pnas.0913774107 CrossRefGoogle Scholar
  8. Dekker C, Roe SM, McCormack EA et al (2011) The crystal structure of yeast CCT reveals intrinsic asymmetry of eukaryotic cytosolic chaperonins. EMBO J 30:3078–3090.  https://doi.org/10.1038/emboj.2011.208 CrossRefGoogle Scholar
  9. Douglas NR, Reissmann S, Zhang J, Chen B, Jakana J, Kumar R, Chiu W, Frydman J (2011) Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber. Cell 144:240–252.  https://doi.org/10.1016/j.cell.2010.12.017 CrossRefGoogle Scholar
  10. Elliott KL, Svanstrom A, Spiess M et al (2015) A novel function of the monomeric CCTepsilon subunit connects the serum response factor pathway to chaperone-mediated actin folding. Mol Biol Cell 26:2801–2809.  https://doi.org/10.1091/mbc.E15-01-0048 CrossRefGoogle Scholar
  11. Fares MA, Wolfe KH (2003) Positive selection and subfunctionalization of duplicated CCT chaperonin subunits. Mol Biol Evol 20:1588–1597.  https://doi.org/10.1093/molbev/msg160 CrossRefGoogle Scholar
  12. Finka A, Goloubinoff P (2013) Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis. Cell Stress Chaperones 18:591–605.  https://doi.org/10.1007/s12192-013-0413-3 CrossRefGoogle Scholar
  13. Finnigan GC, Hanson-Smith V, Stevens TH, Thornton JW (2012) Evolution of increased complexity in a molecular machine. Nature 481:360–364.  https://doi.org/10.1038/nature10724 CrossRefGoogle Scholar
  14. Frydman J, Nimmesgern E, Ohtsuka K, Hartl FU (1994) Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370:111–117.  https://doi.org/10.1038/370111a0 CrossRefGoogle Scholar
  15. Hein MY, Hubner NC, Poser I, Cox J, Nagaraj N, Toyoda Y, Gak IA, Weisswange I, Mansfeld J, Buchholz F, Hyman AA, Mann M (2015) A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163:712–723.  https://doi.org/10.1016/j.cell.2015.09.053 CrossRefGoogle Scholar
  16. Horwich AL, Fenton WA, Chapman E, Farr GW (2007) Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23:115–145.  https://doi.org/10.1146/annurev.cellbio.23.090506.123555 CrossRefGoogle Scholar
  17. Kalisman N, Adams CM, Levitt M (2012) Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry, and combinatorial homology modeling. Proc Natl Acad Sci 109:2884–2889.  https://doi.org/10.1073/pnas.1119472109 CrossRefGoogle Scholar
  18. Knee KM, Goulet DR, Zhang J, Chen B, Chiu W, King JA (2011) The group II chaperonin mm-Cpn binds and refolds human γD crystallin. Protein Sci 20:30–41.  https://doi.org/10.1002/pro.531 CrossRefGoogle Scholar
  19. Kubota H, Hynes G, Willison K (1995) The chaperonin containing t-complex polypeptide 1 (TCP-1). Eur J Biochem 230:3–16CrossRefGoogle Scholar
  20. Kubota H, Hynes GM, Kerr SM, Willison KR (1997) Tissue-specific subunit of the mouse cytosolic chaperonin-containing TCP-1. FEBS Lett 402:53–56CrossRefGoogle Scholar
  21. Kubota H, Yokota S, Yanagi H, Yura T (1999) Structures and co-regulated expression of the genes encoding mouse cytosolic chaperonin CCT subunits. Eur J Biochem 262:492–500CrossRefGoogle Scholar
  22. Leitner A, Joachimiak LA, Bracher A, Mönkemeyer L, Walzthoeni T, Chen B, Pechmann S, Holmes S, Cong Y, Ma B, Ludtke S, Chiu W, Hartl FU, Aebersold R, Frydman J (2012) The molecular architecture of the eukaryotic chaperonin TRiC/CCT. Struct 20:814–825.  https://doi.org/10.1016/j.str.2012.03.007 CrossRefGoogle Scholar
  23. Liou AKF, Willison KR (1997) Elucidation of the subunit orientation in CCT (chaperonin containing TCP1) from the subunit composition of CCT micro-complexes. EMBO J 16:4311–4316CrossRefGoogle Scholar
  24. Liou AK, McCormack EA, Willison KR (1998) The chaperonin containing TCP-1 (CCT) displays a single-ring mediated disassembly and reassembly cycle. Biol Chem 379:311–319CrossRefGoogle Scholar
  25. Llorca O, Martín-Benito J, Ritco-Vonsovici M et al (2000) Eukaryotic chaperonin CCT stabilizes actin and tubulin folding intermediates in open quasi-native conformations. EMBO J 19:5971–5979.  https://doi.org/10.1093/emboj/19.22.5971 CrossRefGoogle Scholar
  26. Martín-Benito J, Grantham J, Boskovic J, Brackley KI, Carrascosa JL, Willison KR, Valpuesta JM (2007) The inter-ring arrangement of the cytosolic chaperonin CCT. EMBO Rep 8:252–257.  https://doi.org/10.1038/sj.embor.7400894 CrossRefGoogle Scholar
  27. Pereira JH, McAndrew RP, Sergeeva OA et al (2017) Structure of the human TRiC/CCT subunit 5 associated with hereditary sensory neuropathy. Sci Rep 7:3673.  https://doi.org/10.1038/s41598-017-03825-3 CrossRefGoogle Scholar
  28. Reissmann S, Parnot C, Booth CR, Chiu W, Frydman J (2007) Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins. Nat Struct Mol Biol 14:432–440.  https://doi.org/10.1038/nsmb1236 CrossRefGoogle Scholar
  29. Rommelaere H, Van Troys M, Gao Y et al (1993) Eukaryotic cytosolic chaperonin contains t-complex polypeptide 1 and seven related subunits. Proc Natl Acad Sci 90:11975–11979CrossRefGoogle Scholar
  30. Roobol A, Carden MJ (1999) Subunits of the eukaryotic cytosolic chaperonin CCT do not always behave as components of a uniform hetero-oligomeric particle. Eur J Cell Biol 78:21–32CrossRefGoogle Scholar
  31. Roobol A, Holmes FE, Hayes NVL et al (1995) Cytoplasmic chaperonin complexes enter neurites developing in vitro and differ in subunit composition within single cells. J Cell Sci 108:1477–1488Google Scholar
  32. Roobol A, Grantham J, Whitaker HC, Carden MJ (1999a) Disassembly of the cytosolic chaperonin in mammalian cell extracts at intracellular levels of K+ and ATP. J Biol Chem 274:19220–19227CrossRefGoogle Scholar
  33. Roobol A, Sahyoun ZP, Carden MJ (1999b) Selected subunits of the cytosolic chaperonin associate with microtubules assembled in vitro. J Biol Chem 274:2408–2415CrossRefGoogle Scholar
  34. Sergeeva OA, Chen B, Haase-Pettingell C, Ludtke SJ, Chiu W, King JA (2013) Human CCT4 and CCT5 chaperonin subunits expressed in Escherichia coli form biologically active homo-oligomers. J Biol Chem 288:17734–17744.  https://doi.org/10.1074/jbc.M112.443929 CrossRefGoogle Scholar
  35. Sergeeva OA, Tran MT, Haase-Pettingell C, King JA (2014) Biochemical characterization of mutants in chaperonin proteins CCT4 and CCT5 associated with hereditary sensory neuropathy. J Biol Chem 289:27470–27480.  https://doi.org/10.1074/jbc.M114.576033 CrossRefGoogle Scholar
  36. Simsek D, Tiu GC, Flynn RA, Byeon GW, Leppek K, Xu AF, Chang HY, Barna M (2017) The mammalian ribo-interactome reveals ribosome functional diversity and heterogeneity. Cell 169:1051–1065.e18.  https://doi.org/10.1016/j.cell.2017.05.022 CrossRefGoogle Scholar
  37. Skouri-Panet F, Michiel M, Ferard C et al (2012) Structural and functional specificity of small heat shock protein HspB1 and HspB4, two cellular partners of HspB5: role of the in vitro hetero-complex formation in chaperone activity. Biochimie 94:975–984.  https://doi.org/10.1016/j.biochi.2011.12.018 CrossRefGoogle Scholar
  38. Spiess M, Echbarthi M, Svanstrom A et al (2015) Over-expression analysis of all eight subunits of the molecular chaperone CCT in mammalian cells reveals a novel function for CCTdelta. J Mol Biol 427:2757–2764.  https://doi.org/10.1016/j.jmb.2015.06.007 CrossRefGoogle Scholar
  39. Wedeken L, Ohnheiser J, Hirschi B, Wethkamp N, Klempnauer KH (2010) Association of tumor suppressor protein Pdcd4 with ribosomes is mediated by protein-protein and protein-RNA interactions. Genes Cancer 1:293–301.  https://doi.org/10.1177/1947601910364227 CrossRefGoogle Scholar
  40. Yébenes H, Mesa P, Muñoz IG, Montoya G, Valpuesta JM (2011) Chaperonins: two rings for folding. Trends Biochem Sci 36:424–432.  https://doi.org/10.1016/j.tibs.2011.05.003 CrossRefGoogle Scholar
  41. Yokota S, Yamamoto Y, Shimizu K, Momoi H, Kamikawa T, Yamaoka Y, Yanagi H, Yura T, Kubota H (2001a) Increased expression of cytosolic chaperonin CCT in human hepatocellular and colonic carcinoma. Cell Stress Chaperones 6:345–350CrossRefGoogle Scholar
  42. Yokota S, Yanagi H, Yura T, Kubota H (2001b) Cytosolic chaperonin-containing t-complex polypeptide 1 changes the content of a particular subunit species concomitant with substrate binding and folding activities during the cell cycle. Eur J Biochem 268:4664–4673.  https://doi.org/10.1046/j.1432-1327.2001.02393.x CrossRefGoogle Scholar
  43. Zaballa M-E, van der Goot FG (2018) The molecular era of protein S-acylation: spotlight on structure, mechanisms, and dynamics. Crit Rev Biochem Mol Biol 53:420–451.  https://doi.org/10.1080/10409238.2018.1488804 CrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2019

Authors and Affiliations

  1. 1.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Global Health Institute, School of Life SciencesEPFLLausanneSwitzerland
  3. 3.Computer Science and Artificial Intelligence (CSAIL)Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations