Advertisement

l-Thyroxine induces thermotolerance in yeast

  • Konstantinos PapamichaelEmail author
  • Basil Delitheos
  • Iordanis Mourouzis
  • Constantinos Pantos
  • Ekaterini Tiligada
Short Communication
  • 7 Downloads

Abstract

The cellular stress response (CSR) is a universal inducible reaction modulated, among others, by heat, drugs, and hormones. We aimed to investigate the role of l-thyroxine (T4) on the heat shock (HS) response in Saccharomyces cerevisiae. The CSR was evaluated by determining growth and viability of post-logarithmic phase grown yeast cultures after HS at 53 °C for 30 min. We found that long-term T4 exposure can induce a dose-dependent and Hsp90 and H+ trafficking-related thermotolerance in yeast.

Keywords

Heat shock response Thyroxine Heat shock proteins Yeast Thermotolerance 

Notes

Funding

This study was funded by the Grant No. 5900 of the National and Kapodistrian University of Athens Research Account, Greece.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Atterwill CK, Brown CG, Fowler KL, Jones CA (1989) Studies on the effects of omeprazole on thyroid function in the rat. J Pharm Pharmacol 41:733–735CrossRefGoogle Scholar
  2. Brion C, Pflieger D, Souali-Crespo S, Friedrich A, Schacherer J (2016) Differences in environmental stress response among yeasts is consistent with species-specific lifestyles. Mol Biol Cell 27:1694–1705.  https://doi.org/10.1091/mbc.E15-12-0816.DOI:10.1091/mbc.E15-12-0816
  3. Burshell A, Stathis PA, Do Y, Miller SC, Feldman D (1984) Characterization of an estrogen-binding protein in the yeast Saccharomyces cerevisiae. J Biol Chem 259:3450–3456Google Scholar
  4. Caticha O, Grover S, Yu W, Odell WD (1994) The presence of a human chorionic gonadotropin-like protein and its binding site in Saccharomyces cerevisiae. Endocr Res 20:21–37CrossRefGoogle Scholar
  5. Coote PJ, Jones MV, Seymour IJ, Rowe DL, Ferdinando DP, McArthur AJ, Cole MB (1994) Activity of the plasma membrane H+-ATPase is a key physiological determinant of thermotolerance in Saccharomyces cerevisiae. Microbiology 140:1881–1890.  https://doi.org/10.1099/13500872-140-8-1881 CrossRefGoogle Scholar
  6. Davis PJ, Leonard JL, Davis FB (2008) Mechanisms of nongenomic actions of thyroid hormone. Front Neuroendocrinol 29:211–218.  https://doi.org/10.1016/j.yfrne.2007.09.003 CrossRefGoogle Scholar
  7. Delitheos B, Papamichael K, Tiligada E (2010) Histamine modulates the cellular stress response in yeast. Amino Acids 38:1219–1226.  https://doi.org/10.1007/s00726-009-0333-9 CrossRefGoogle Scholar
  8. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257. 11102521.  https://doi.org/10.1091/mbc.11.12.4241 CrossRefGoogle Scholar
  9. Graham G, Sharp PJ, Li Q et al (2009) HSP90B1, a thyroid hormone-responsive heat shock protein gene involved in photoperiodic signaling. Brain Res Bull 79:201–207.  https://doi.org/10.1016/j.brainresbull.2009.01.010 CrossRefGoogle Scholar
  10. Gururaj AE, Rayala SK, Vadlamudi RK, Kumar R (2006) Novel mechanisms of resistance to endocrine therapy: genomic and nongenomic considerations. Clin Cancer Res 12:1001s7s.  https://doi.org/10.1158/1078-0432.CCR-05-2110 CrossRefGoogle Scholar
  11. Gutenstein M, Marx W (1957) Stimulation of yeast respiration by l-thyroxine. J Biol Chem 229:599–602Google Scholar
  12. Hall BL, Smit-McBride Z, Privalsky ML (1993) Reconstitution of retinoid X receptor function and combinatorial regulation of other nuclear hormone receptors in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 90:6929–6933CrossRefGoogle Scholar
  13. Masubuchi N, Hakusui H, Okazaki O (1997) Effects of proton pump inhibitors on thyroid hormone metabolism in rats: a comparison of UDP-glucuronyltransferase induction. Biochem Pharmacol 54:1225–1231CrossRefGoogle Scholar
  14. Ortega L, Calvillo M, Luna F, Pérez-Severiano F, Rubio-Osornio M, Guevara J, Limón ID (2014) 17-AAG improves cognitive process and increases heat shock protein response in a model lesion with Aβ25-35. Neuropeptides 48:221–232.  https://doi.org/10.1016/j.npep.2014.04.006 CrossRefGoogle Scholar
  15. Pantos C, Malliopoulou VA, Mourouzis IS, Karamanoli EP, Tzeis SM, Carageorgiou HC, Varonos DD, Cokkinos DV (2001) Long-term thyroxine administration increases heat stress protein-70 mRNA expression and attenuates p38 MAP kinase activity in response to ischaemia. J Endocrinol 170:207–215CrossRefGoogle Scholar
  16. Pantos C, Malliopoulou V, Mourouzis I, Karamanoli E, Moraitis P, Tzeis S, Paizis I, Cokkinos AD, Carageorgiou H, Varonos DD, Cokkinos DV (2003) Thyroxine pretreatment increases basal myocardial heat-shock protein 27 expression and accelerates translocation and phosphorylation of this protein upon ischaemia. Eur J Pharmacol 478:53–60CrossRefGoogle Scholar
  17. Papamichael K, Vovou I, Miligkos V, Stavrinidis E, Delitheos A, Tiligada E (2006) Effect of the hsp90 modulators on the heat shock response in eukaryotic cells. Folia Microbiol (Praha) 51:33–37CrossRefGoogle Scholar
  18. Papamichael K, Delitheos B, Tiligada E (2013) A subset of histamine receptor ligands improve thermotolerance of the yeast Saccharomyces cerevisiae. J Appl Microbiol 114:492–501.  https://doi.org/10.1111/jam.12055 CrossRefGoogle Scholar
  19. Piper PW, Ortiz-Calderon C, Holyoak C, Coote P, Cole M (1997) Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase. Cell Stress Chaperones 2:12–24. 9250391 CrossRefGoogle Scholar
  20. Stahn C, Löwenberg M, Hommes DW, Buttgereit F (2007) Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists. Mol Cell Endocrinol 275:71–78.  https://doi.org/10.1016/j.mce.2007.05.019 CrossRefGoogle Scholar
  21. Święciło A (2016) Cross-stress resistance in Saccharomyces cerevisiae yeast--new insight into an old phenomenon. Cell Stress Chaperones 21:187–200.  https://doi.org/10.1007/s12192-016-0667-7 CrossRefGoogle Scholar
  22. Ui T, Morishima K, Saito S et al (2014) The HSP90 inhibitor 17-N-allylamino-17-demethoxy geldanamycin (17-AAG) synergizes with cisplatin and induces apoptosis in cisplatin-resistant esophageal squamous cell carcinoma cell lines via the Akt/XIAP pathway. Oncol Rep 31:619–624.  https://doi.org/10.3892/or.2013.2899 CrossRefGoogle Scholar
  23. Verghese J, Abrams J, Wang Y, Morano KA (2012) Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 76:115–158.  https://doi.org/10.1128/MMBR.05018-11 CrossRefGoogle Scholar
  24. Vovou I, Delitheos A, Tiligada E (2004) The heat shock response is dependent on the external environment and on rapid ionic balancing by pharmacological agents in Saccharomyces cerevisiae. J Appl Microbiol 96:1271–1277.  https://doi.org/10.1111/j.1365-2672.2004.02256.x CrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2019

Authors and Affiliations

  • Konstantinos Papamichael
    • 1
    • 2
    Email author
  • Basil Delitheos
    • 1
  • Iordanis Mourouzis
    • 1
  • Constantinos Pantos
    • 1
  • Ekaterini Tiligada
    • 1
  1. 1.Department of Pharmacology, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
  2. 2.Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA

Personalised recommendations