Advertisement

Cell Stress and Chaperones

, Volume 24, Issue 2, pp 369–383 | Cite as

Sirtuin 3 inhibition induces mitochondrial stress in tongue cancer by targeting mitochondrial fission and the JNK-Fis1 biological axis

  • Jichi Zhou
  • Menghan Shi
  • Man Li
  • Long Cheng
  • Jinsuo Yang
  • Xin HuangEmail author
Original Paper

Abstract

Sirtuin 3 (Sirt3)-modified mitochondrial fission participates in the progression of several types of cancers. However, its role in tongue cancer requires investigation. The aim of our study is to determine whether Sirt3 knockdown regulates the viability of tongue cancer cells via modulating mitochondrial fission. Two types of tongue cancer cells were used in the present study, and siRNA was transfected into the cells to suppress Sirt3 expression. Mitochondrial function and cell apoptosis were determined via immunofluorescence, Western blotting, ELISA, and qPCR assays. A pathway blocker was applied to verify the role of the JNK-Fis1 signaling pathway in regulation of mitochondrial fission. The present study showed that loss of Sirt3 promoted tongue cancer cell death in a manner dependent on mitochondrial apoptosis. Mitochondrial oxidative stress, energy metabolism disorder, mitochondrial cyt-c liberation, and mitochondrial apoptosis activation were observed after Sirt3 silencing. Furthermore, we demonstrated that Sirt3 knockdown activated mitochondrial stress via triggering Fis1-related mitochondrial fission and that inhibition of Fis1-related mitochondrial fission abrogated the pro-apoptotic effect of Sirt3 knockdown on tongue cancer cells. To this end, we found that Sirt3 modulated Fis1 expression via the c-Jun N-terminal kinases (JNK) signaling pathway and that blockade of the JNK pathway attenuated mitochondrial stress and repressed apoptosis in Sirt3 knockdown cells. Altogether, our results identified a tumor-suppressive role for Sirt3 deficiency in tongue cancer via activation of the JNK-Fis1 axis and subsequent initiation of fatal mitochondrial fission. Given these findings, strategies to repress Sirt3 activity and enhance the JNK-Fis1-mitochondrial fission cascade have clinical benefits for patients with tongue cancer.

Keywords

Tongue cancer Mitochondrial fission Sirt3 JNK-Fis1 signaling pathway Mitochondrial dysfunction 

Notes

Funding

This research was supported by the Scientific Research Common Program of Beijing Municipal Commission of Education (KM201710025020).

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

References

  1. Ackermann M, Kim YO, Wagner WL, Schuppan D, Valenzuela CD, Mentzer SJ, Kreuz S, Stiller D, Wollin L, Konerding MA (2017) Effects of nintedanib on the microvascular architecture in a lung fibrosis model. Angiogenesis 20:359–372.  https://doi.org/10.1007/s10456-017-9543-z CrossRefGoogle Scholar
  2. Anamika KA, Acharjee P, Acharjee A, Trigun SK (2017) Mitochondrial SIRT3 and neurodegenerative brain disorders. J Chem Neuroanat 95:43–53.  https://doi.org/10.1016/j.jchemneu.2017.11.009 CrossRefGoogle Scholar
  3. Blackburn NJR, Vulesevic B, McNeill B, Cimenci CE, Ahmadi A, Gonzalez-Gomez M, Ostojic A, Zhong Z, Brownlee M, Beisswenger PJ, Milne RW, Suuronen EJ (2017) Methylglyoxal-derived advanced glycation end products contribute to negative cardiac remodeling and dysfunction post-myocardial infarction. Basic Res Cardiol 112:57.  https://doi.org/10.1007/s00395-017-0646-x CrossRefGoogle Scholar
  4. Conradi LC, Brajic A, Cantelmo AR, Bouché A, Kalucka J, Pircher A, Brüning U, Teuwen LA, Vinckier S, Ghesquière B, Dewerchin M, Carmeliet P (2017) Tumor vessel disintegration by maximum tolerable PFKFB3 blockade. Angiogenesis 20:599–613.  https://doi.org/10.1007/s10456-017-9573-6 CrossRefGoogle Scholar
  5. Das N, Mandala A, Naaz S, Giri S, Jain M, Bandyopadhyay D, Reiter RJ, Roy SS (2017) Melatonin protects against lipid-induced mitochondrial dysfunction in hepatocytes and inhibits stellate cell activation during hepatic fibrosis in mice. J Pineal Res 62.  https://doi.org/10.1111/jpi.12404
  6. Fuhrmann DC, Brune B (2017) Mitochondrial composition and function under the control of hypoxia. Redox Biol 12:208–215.  https://doi.org/10.1016/j.redox.2017.02.012 CrossRefGoogle Scholar
  7. Fukumoto M, Kondo K, Uni K, Ishiguro T, Hayashi M, Ueda S, Mori I, Niimi K, Tashiro F, Miyazaki S, Miyazaki JI, Inagaki S, Furuyama T (2018) Tip-cell behavior is regulated by transcription factor FoxO1 under hypoxic conditions in developing mouse retinas. Angiogenesis 21:203–214.  https://doi.org/10.1007/s10456-017-9588-z CrossRefGoogle Scholar
  8. Gadicherla AK, Wang N, Bulic M, Agullo-Pascual E, Lissoni A, de Smet M, Delmar M, Bultynck G, Krysko DV, Camara A, Schlüter KD, Schulz R, Kwok WM, Leybaert L (2017) Mitochondrial Cx43 hemichannels contribute to mitochondrial calcium entry and cell death in the heart. Basic Res Cardiol 112:27.  https://doi.org/10.1007/s00395-017-0618-1 CrossRefGoogle Scholar
  9. Gao Y, Xiao X, Zhang C, Yu W, Guo W, Zhang Z, Li Z, Feng X, Hao J, Zhang K, Xiao B, Chen M, Huang W, Xiong S, Wu X, Deng W (2017) Melatonin synergizes the chemotherapeutic effect of 5-fluorouracil in colon cancer by suppressing PI3K/AKT and NF-kappaB/iNOS signaling pathways. J Pineal Res 62.  https://doi.org/10.1111/jpi.12380
  10. Gonzalez NR, Liou R, Kurth F, Jiang H, Saver J (2018) Antiangiogenesis and medical therapy failure in intracranial atherosclerosis. Angiogenesis 21:23–35.  https://doi.org/10.1007/s10456-017-9578-1 CrossRefGoogle Scholar
  11. Hambright WS, Fonseca RS, Chen L, Na R, Ran Q (2017) Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol 12:8–17.  https://doi.org/10.1016/j.redox.2017.01.021 CrossRefGoogle Scholar
  12. Hooshdaran B, Kolpakov MA, Guo X, Miller SA, Wang T, Tilley DG, Rafiq K, Sabri A (2017) Dual inhibition of cathepsin G and chymase reduces myocyte death and improves cardiac remodeling after myocardial ischemia reperfusion injury. Basic Res Cardiol 112:62.  https://doi.org/10.1007/s00395-017-0652-z CrossRefGoogle Scholar
  13. Iggena D, Winter Y, Steiner B (2017) Melatonin restores hippocampal neural precursor cell proliferation and prevents cognitive deficits induced by jet lag simulation in adult mice. J Pineal Res 62.  https://doi.org/10.1111/jpi.12397
  14. Jin Q, Li R, Hu N, Xin T, Zhu P, Hu S, Ma S, Zhu H, Ren J, Zhou H (2018) DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the Mff-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways. Redox Biol 14:576–587.  https://doi.org/10.1016/j.redox.2017.11.004 CrossRefGoogle Scholar
  15. Jing E, Emanuelli B, Hirschey MD, Boucher J, Lee KY, Lombard D, Verdin EM, Kahn CR (2011) Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci U S A 108:14608–14613.  https://doi.org/10.1073/pnas.1111308108 CrossRefGoogle Scholar
  16. Jokinen R, Pirnes-Karhu S, Pietilainen KH, Pirinen E (2017) Adipose tissue NAD(+)-homeostasis, sirtuins and poly (ADP-ribose) polymerases -important players in mitochondrial metabolism and metabolic health. Redox Biol 12:246–263.  https://doi.org/10.1016/j.redox.2017.02.011 CrossRefGoogle Scholar
  17. Kalyanaraman B (2017) Teaching the basics of cancer metabolism: developing antitumor strategies by exploiting the differences between normal and cancer cell metabolism. Redox Biol 12:833–842.  https://doi.org/10.1016/j.redox.2017.04.018 CrossRefGoogle Scholar
  18. Kiel AM, Goodwill AG, Noblet JN, Barnard AL, Sassoon DJ, Tune JD (2017) Regulation of myocardial oxygen delivery in response to graded reductions in hematocrit: role of K(+) channels. Basic Res Cardiol 112:65.  https://doi.org/10.1007/s00395-017-0654-x CrossRefGoogle Scholar
  19. Koentges C, Pepin ME, Müsse C, Pfeil K, Alvarez SVV, Hoppe N, Hoffmann MM, Odening KE, Sossalla S, Zirlik A, Hein L, Bode C, Wende AR, Bugger H (2017) Gene expression analysis to identify mechanisms underlying heart failure susceptibility in mice and humans. Basic Res Cardiol 113:8.  https://doi.org/10.1007/s00395-017-0666-6 CrossRefGoogle Scholar
  20. Koopman CD, Zimmermann WH, Knopfel T, de Boer TP (2017) Cardiac optogenetics: using light to monitor cardiac physiology. Basic Res Cardiol 112:56.  https://doi.org/10.1007/s00395-017-0645-y CrossRefGoogle Scholar
  21. Korbel C, Gerstner MD, Menger MD, Laschke MW (2018) Notch signaling controls sprouting angiogenesis of endometriotic lesions. Angiogenesis 21:37–46.  https://doi.org/10.1007/s10456-017-9580-7 CrossRefGoogle Scholar
  22. Lagerweij T, Dusoswa SA, Negrean A, Hendrikx EML, de Vries HE, Kole J, Garcia-Vallejo JJ, Mansvelder HD, Vandertop WP, Noske DP, Tannous BA, Musters RJP, van Kooyk Y, Wesseling P, Zhao XW, Wurdinger T (2017) Optical clearing and fluorescence deep-tissue imaging for 3D quantitative analysis of the brain tumor microenvironment. Angiogenesis 20:533–546.  https://doi.org/10.1007/s10456-017-9565-6 CrossRefGoogle Scholar
  23. Lee HJ, Jung YH, Choi GE, Ko SH, Lee SJ, Lee SH, Han HJ (2017) BNIP3 induction by hypoxia stimulates FASN-dependent free fatty acid production enhancing therapeutic potential of umbilical cord blood-derived human mesenchymal stem cells. Redox Biol 13:426–443.  https://doi.org/10.1016/j.redox.2017.07.004 CrossRefGoogle Scholar
  24. Li H, He F, Zhao X, Zhang Y, Chu X, Hua C, Qu Y, Duan Y, Ming L (2017) YAP inhibits the apoptosis and migration of human rectal cancer cells via suppression of JNK-Drp1-mitochondrial fission-HtrA2/Omi pathways. Cell Physiol Biochem 44:2073–2089.  https://doi.org/10.1159/000485946 CrossRefGoogle Scholar
  25. Li R, Xin T, Li D, Wang C, Zhu H, Zhou H (2018) Therapeutic effect of sirtuin 3 on ameliorating nonalcoholic fatty liver disease: the role of the ERK-CREB pathway and Bnip3-mediated mitophagy. Redox Biol 18:229–243.  https://doi.org/10.1016/j.redox.2018.07.011 CrossRefGoogle Scholar
  26. Lin S, Hoffmann K, Gao C, Petrulionis M, Herr I, Schemmer P (2017) Melatonin promotes sorafenib-induced apoptosis through synergistic activation of JNK/c-jun pathway in human hepatocellular carcinoma. J Pineal Res 62.  https://doi.org/10.1111/jpi.12398
  27. Morell M, Burgos JI, Gonano LA, Vila Petroff M (2017) AMPK-dependent nitric oxide release provides contractile support during hyperosmotic stress. Basic Res Cardiol 113:7.  https://doi.org/10.1007/s00395-017-0665-7 CrossRefGoogle Scholar
  28. Parodi-Rullan RM, Chapa-Dubocq XR, Javadov S (2018) Acetylation of mitochondrial proteins in the heart: the role of SIRT3. Front Physiol 9:1094.  https://doi.org/10.3389/fphys.2018.01094 CrossRefGoogle Scholar
  29. Pryds K, Nielsen RR, Jorsal A, Hansen MS, Ringgaard S, Refsgaard J, Kim WY, Petersen AK, Bøtker HE, Schmidt MR (2017) Effect of long-term remote ischemic conditioning in patients with chronic ischemic heart failure. Basic Res Cardiol 112:67.  https://doi.org/10.1007/s00395-017-0658-6 CrossRefGoogle Scholar
  30. Reddy KRK, Dasari C, Duscharla D, Supriya B, Ram NS, Surekha MV, Kumar JM, Ummanni R (2018) Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is frequently upregulated in prostate cancer, and its overexpression conveys tumor growth and angiogenesis by metabolizing asymmetric dimethylarginine (ADMA). Angiogenesis 21:79–94.  https://doi.org/10.1007/s10456-017-9587-0 CrossRefGoogle Scholar
  31. Schluter KD, Wolf A, Weber M, Schreckenberg R, Schulz R (2017) Oxidized low-density lipoprotein (oxLDL) affects load-free cell shortening of cardiomyocytes in a proprotein convertase subtilisin/kexin 9 (PCSK9)-dependent way. Basic Res Cardiol 112:63.  https://doi.org/10.1007/s00395-017-0650-1 CrossRefGoogle Scholar
  32. Shi C, Cai Y, Li Y, Li Y, Hu N, Ma S, Hu S, Zhu P, Wang W, Zhou H (2018) Yap promotes hepatocellular carcinoma metastasis and mobilization via governing cofilin/F-actin/lamellipodium axis by regulation of JNK/Bnip3/SERCA/CaMKII pathways. Redox Biol 14:59–71.  https://doi.org/10.1016/j.redox.2017.08.013 CrossRefGoogle Scholar
  33. Sigala F, Efentakis P, Karageorgiadi D, Filis K, Zampas P, Iliodromitis EK, Zografos G, Papapetropoulos A, Andreadou I (2017) Reciprocal regulation of eNOS, H2S and CO-synthesizing enzymes in human atheroma: correlation with plaque stability and effects of simvastatin. Redox Biol 12:70–81.  https://doi.org/10.1016/j.redox.2017.02.006 CrossRefGoogle Scholar
  34. Souza LEB, Beckenkamp LR, Sobral LM, Fantacini DMC, Melo FUF, Borges JS, Leopoldino AM, Kashima S, Covas DT (2018) Pre-culture in endothelial growth medium enhances the angiogenic properties of adipose-derived stem/stromal cells. Angiogenesis 21:15–22.  https://doi.org/10.1007/s10456-017-9579-0 CrossRefGoogle Scholar
  35. Tenreiro MM, Correia ML, Brito MA (2017) Endothelial progenitor cells in multiple myeloma neovascularization: a brick to the wall. Angiogenesis 20:443–462.  https://doi.org/10.1007/s10456-017-9571-8 CrossRefGoogle Scholar
  36. Turner CJ, Badu-Nkansah K, Hynes RO (2017) Endothelium-derived fibronectin regulates neonatal vascular morphogenesis in an autocrine fashion. Angiogenesis 20:519–531.  https://doi.org/10.1007/s10456-017-9563-8 CrossRefGoogle Scholar
  37. van Beijnum JR, Nowak-Sliwinska P, van Berkel M, Wong TJ, Griffioen AW (2017) A genomic screen for angiosuppressor genes in the tumor endothelium identifies a multifaceted angiostatic role for bromodomain containing 7 (BRD7). Angiogenesis 20:641–654.  https://doi.org/10.1007/s10456-017-9576-3 CrossRefGoogle Scholar
  38. Wang J, Wang K, Huang C, Lin D, Zhou Y, Wu Y, Tian N, Fan P, Pan X, Xu D, Hu J, Zhou Y, Wang X, Zhang X (2018a) SIRT3 activation by dihydromyricetin suppresses chondrocytes degeneration via maintaining mitochondrial homeostasis. Int J Biol Sci 14:1873–1882.  https://doi.org/10.7150/ijbs.27746 CrossRefGoogle Scholar
  39. Wang Y, Sun X, Ji K, du L, Xu C, He N, Wang J, Liu Y, Liu Q (2018b) Sirt3-mediated mitochondrial fission regulates the colorectal cancer stress response by modulating the Akt/PTEN signalling pathway. Biomed Pharmacother 105:1172–1182.  https://doi.org/10.1016/j.biopha.2018.06.071 CrossRefGoogle Scholar
  40. Xu X, Zhang P, Kwak D, Fassett J, Yue W, Atzler D, Hu X, Liu X, Wang H, Lu Z, Guo H, Schwedhelm E, Böger RH, Chen P, Chen Y (2017) Cardiomyocyte dimethylarginine dimethylaminohydrolase-1 (DDAH1) plays an important role in attenuating ventricular hypertrophy and dysfunction. Basic Res Cardiol 112:55.  https://doi.org/10.1007/s00395-017-0644-z CrossRefGoogle Scholar
  41. Yan H, Qiu C, Sun W, Gu M, Xiao F, Zou J, Zhang L (2018a) Yap regulates gastric cancer survival and migration via SIRT1/Mfn2/mitophagy. Oncol Rep 39:1671–1681.  https://doi.org/10.3892/or.2018.6252 Google Scholar
  42. Yan H, Xiao F, Zou J, Qiu C, Sun W, Gu M, Zhang L (2018b) NR4A1-induced increase in the sensitivity of a human gastric cancer line to TNFalpha-mediated apoptosis is associated with the inhibition of JNK/Parkin-dependent mitophagy. Int J Oncol 52:367–378.  https://doi.org/10.3892/ijo.2017.4216 Google Scholar
  43. Zhai M, Li B, Duan W, Jing L, Zhang B, Zhang M, Yu L, Liu Z, Yu B, Ren K, Gao E, Yang Y, Liang H, Jin Z, Yu S (2017) Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis. J Pineal Res 63.  https://doi.org/10.1111/jpi.12419
  44. Zhang Y, Zhou H, Wu W, Shi C, Hu S, Yin T, Ma Q, Han T, Zhang Y, Tian F, Chen Y (2016) Liraglutide protects cardiac microvascular endothelial cells against hypoxia/reoxygenation injury through the suppression of the SR-Ca(2+)-XO-ROS axis via activation of the GLP-1R/PI3K/Akt/survivin pathways. Free Radic Biol Med 95:278–292.  https://doi.org/10.1016/j.freeradbiomed.2016.03.035 CrossRefGoogle Scholar
  45. Zhao Q, Ye M, Yang W, Wang M, Li M, Gu C, Zhao L, Zhang Z, Han W, Fan W, Meng Y (2018) Effect of Mst1 on endometriosis apoptosis and migration: role of Drp1-related mitochondrial fission and Parkin-required mitophagy. Cell Physiol Biochem 45:1172–1190.  https://doi.org/10.1159/000487450 CrossRefGoogle Scholar
  46. Zhong W, Gao X, Wang S, Han K, Ema M, Adams S, Adams RH, Rosenblatt MI, Chang JH, Azar DT (2017) Prox1-GFP/Flt1-DsRed transgenic mice: an animal model for simultaneous live imaging of angiogenesis and lymphangiogenesis. Angiogenesis 20:581–598.  https://doi.org/10.1007/s10456-017-9572-7 CrossRefGoogle Scholar
  47. Zhou H, du W, Li Y, Shi C, Hu N, Ma S, Wang W, Ren J (2018a) Effects of melatonin on fatty liver disease: the role of NR4A1/DNA-PKcs/p53 pathway, mitochondrial fission, and mitophagy. J Pineal Res 64.  https://doi.org/10.1111/jpi.12450
  48. Zhou H, Hu S, Jin Q, Shi C, Zhang Y, Zhu P, Ma Q, Tian F, Chen Y (2017a) Mff-dependent mitochondrial fission contributes to the pathogenesis of cardiac microvasculature ischemia/reperfusion injury via induction of mROS-mediated cardiolipin oxidation and HK2/VDAC1 disassociation-involved mPTP opening. J Am Heart Assoc 6.  https://doi.org/10.1161/JAHA.116.005328
  49. Zhou H, Li D, Zhu P, Hu S, Hu N, Ma S, Zhang Y, Han T, Ren J, Cao F, Chen Y (2017b) Melatonin suppresses platelet activation and function against cardiac ischemia/reperfusion injury via PPARgamma/FUNDC1/mitophagy pathways. J Pineal Res 63.  https://doi.org/10.1111/jpi.12438
  50. Zhou H, Shi C, Hu S, Zhu H, Ren J, Chen Y (2018b) BI1 is associated with microvascular protection in cardiac ischemia reperfusion injury via repressing Syk-Nox2-Drp1-mitochondrial fission pathways. Angiogenesis 21:599–615.  https://doi.org/10.1007/s10456-018-9611-z CrossRefGoogle Scholar
  51. Zhou H, Wang J, Hu S, Zhu H, Toanc S, Ren J (2019) BI1 alleviates cardiac microvascular ischemia-reperfusion injury via modifying mitochondrial fission and inhibiting XO/ROS/F-actin pathways. J Cell Physiol 234:5056–5069.  https://doi.org/10.1002/jcp.27308 CrossRefGoogle Scholar
  52. Zhou H, Wang J, Zhu P, Hu S, Ren J (2018c) Ripk3 regulates cardiac microvascular reperfusion injury: the role of IP3R-dependent calcium overload, XO-mediated oxidative stress and F-action/filopodia-based cellular migration. Cell Signal 45:12–22.  https://doi.org/10.1016/j.cellsig.2018.01.020 CrossRefGoogle Scholar
  53. Zhou H, Wang J, Zhu P, Zhu H, Toan S, Hu S, Ren J, Chen Y (2018d) NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2alpha. Basic Res Cardiol 113(23).  https://doi.org/10.1007/s00395-018-0682-1
  54. Zhou H, Wang S, Hu S, Chen Y, Ren J (2018e) ER-mitochondria microdomains in cardiac ischemia-reperfusion injury: a fresh perspective. Front Physiol 9:755.  https://doi.org/10.3389/fphys.2018.00755 CrossRefGoogle Scholar
  55. Zhou H, Wang S, Zhu P, Hu S, Chen Y, Ren J (2017c) Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol 15:335–346.  https://doi.org/10.1016/j.redox.2017.12.019 CrossRefGoogle Scholar
  56. Zhou H, Zhang Y, Hu S, Shi C, Zhu P, Ma Q, Jin Q, Cao F, Tian F, Chen Y (2017d) Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis. J Pineal Res 63.  https://doi.org/10.1111/jpi.12413
  57. Zhou H, Zhu P, Guo J, Hu N, Wang S, Li D, Hu S, Ren J, Cao F, Chen Y (2017e) Ripk3 induces mitochondrial apoptosis via inhibition of FUNDC1 mitophagy in cardiac IR injury. Redox Biol 13:498–507.  https://doi.org/10.1016/j.redox.2017.07.007 CrossRefGoogle Scholar
  58. Zhou H, Zhu P, Wang J, Zhu H, Ren J, Chen Y (2018f) Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2alpha-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ 25:1080–1093.  https://doi.org/10.1038/s41418-018-0086-7 CrossRefGoogle Scholar
  59. Zhou J, Zhang H, Wang H, Lutz AM, el Kaffas A, Tian L, Hristov D, Willmann JK (2017f) Early prediction of tumor response to bevacizumab treatment in murine colon cancer models using three-dimensional dynamic contrast-enhanced ultrasound imaging. Angiogenesis 20:547–555.  https://doi.org/10.1007/s10456-017-9566-5 CrossRefGoogle Scholar
  60. Zhu H, Jin Q, Li Y, Ma Q, Wang J, Li D, Zhou H, Chen Y (2018a) Melatonin protected cardiac microvascular endothelial cells against oxidative stress injury via suppression of IP3R-[Ca(2+)]c/VDAC-[Ca(2+)]m axis by activation of MAPK/ERK signaling pathway. Cell Stress Chaperones 23:101–113.  https://doi.org/10.1007/s12192-017-0827-4 CrossRefGoogle Scholar
  61. Zhu P, Hu S, Jin Q, Li D, Tian F, Toan S, Li Y, Zhou H, Chen Y (2018b) Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury: a mechanism involving calcium overload/XO/ROS/mPTP pathway. Redox Biol 16:157–168.  https://doi.org/10.1016/j.redox.2018.02.019 CrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2019

Authors and Affiliations

  • Jichi Zhou
    • 1
  • Menghan Shi
    • 1
  • Man Li
    • 1
  • Long Cheng
    • 1
  • Jinsuo Yang
    • 1
  • Xin Huang
    • 1
    Email author
  1. 1.Department of Oral and Maxillofacial Surgery, Beijing Stomatological HospitalCapital Medical UniversityBeijingChina

Personalised recommendations