Advertisement

Structural and functional insights into TRiC chaperonin from a psychrophilic yeast, Glaciozyma antarctica

  • Nur Athirah YusofEmail author
  • Shazilah Kamaruddin
  • Farah Diba Abu Bakar
  • Nor Muhammad Mahadi
  • Abdul Munir Abdul Murad
Original Paper

Abstract

Studies on TCP1-1 ring complex (TRiC) chaperonin have shown its indispensable role in folding cytosolic proteins in eukaryotes. In a psychrophilic organism, extreme cold temperature creates a low-energy environment that potentially causes protein denaturation with loss of activity. We hypothesized that TRiC may undergo evolution in terms of its structural molecular adaptation in order to facilitate protein folding in low-energy environment. To test this hypothesis, we isolated G. antarctica TRiC (GaTRiC) and found that the expression of GaTRiC mRNA in G. antarctica was consistently expressed at all temperatures indicating their importance in cell regulation. Moreover, we showed GaTRiC has the ability of a chaperonin whereby denatured luciferase can be folded to the functional stage in its presence. Structurally, three categories of residue substitutions were found in α, β, and δ subunits: (i) bulky/polar side chains to alanine or valine, (ii) charged residues to alanine, and (iii) isoleucine to valine that would be expected to increase intramolecular flexibility within the GaTRiC. The residue substitutions observed in the built structures possibly affect the hydrophobic, hydrogen bonds, and ionic and aromatic interactions which lead to an increase in structural flexibility. Our structural and functional analysis explains some possible structural features which may contribute to cold adaptation of the psychrophilic TRiC folding chamber.

Keywords

Molecular chaperone TRiC TCP-1 CCT Psychrophiles Chaperonin Flexibility 

Notes

Acknowledgments

We are grateful to the Ministry of Science, Technology and Innovation, Malaysia, (MOSTI) for funding our project under grant number 02-05-20-SF0007. We thank Prof Jamie Rossjohn for the opportunity to use his lab at Monash University and synchrotron facilities in Australia. Special thanks to Dr. Travis Beddoe from La Trobe University who assisted us with his advice and technical guidance. We are thankful to the Ministry of Higher Education Malaysia for the FRG0463-2017 grant for funding the continuous culturing of Glaciozyma antarctica in Biotechnology Research Institute, Universiti Malaysia Sabah. We also thank those who were involved in the structural project of Glaciozyma antarctica in Malaysia Genome Institute and others who assisted with technical assistance and helpful discussions.

Supplementary material

12192_2019_969_MOESM1_ESM.doc (5.2 mb)
ESM 1 (DOC 5343 kb)

References

  1. Al-Fageeh MB, Smales CM (2006) Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochemical Journal (2):247–259.  https://doi.org/10.1042/BJ20060166
  2. Alimenti C, Ortenzi C, Carratore V, Luporini P (2003) Structural characterization of En-1, a cold-adapted protein pheromone isolated from the Antarctic ciliate Euplotes nobilii. Biochim Biophys Acta 1621:17–21.  https://doi.org/10.1016/S0304-4165(03)00011-4 CrossRefGoogle Scholar
  3. Bae E, Phillips GN Jr (2004) Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases. J Biol Chem 279(27):28202–28208.  https://doi.org/10.1074/jbc.M401865200 CrossRefGoogle Scholar
  4. Bergholz PW, Bakermans C, Tiedje JM (2009) Psychrobacter arcticus 273-4 uses resource efficiency and molecular motion adaptations for subzero temperature growth. J Bacteriol 191:2340–2352.  https://doi.org/10.1128/JB.01377-08 CrossRefGoogle Scholar
  5. Boo SY, Wong CMVL, Rodrigues KF, Najimudin N, Murad AMA, Mahadi NM (2013) Thermal stress responses in Antarctic yeast, Glaciozyma antarctica PI12, characterized by real-time quantitative PCR. Polar Biol 36:381–389.  https://doi.org/10.1007/s00300-012-1268-2 CrossRefGoogle Scholar
  6. Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451.  https://doi.org/10.1016/j.cell.2006.04.014 CrossRefGoogle Scholar
  7. Burley SK, Petsko GA (1986) Amino-aromatic interactions in proteins. FEBS Lett 203:139–143.  https://doi.org/10.1016/0014-5793(86)80730-X CrossRefGoogle Scholar
  8. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:4–622.  https://doi.org/10.1373/clinchem.2008.112797 CrossRefGoogle Scholar
  9. Campanaro S, Williams TJ, Burg DW, De Francisci D, Treu L, Lauro FM, Cavicchioli R (2011) Temperature-dependent global gene expression in the Antarctic archaeon Methanococcoides burtonii. Env Microb 13(8):2018–2038.  https://doi.org/10.1111/j.1462-2920.2010.02367.x CrossRefGoogle Scholar
  10. Casanueva A, Tuffin M, Cary C, Cowan DA (2010) Molecular adaptations to psychrophily: the impacts of ‘omic’ technologies. Trends Microbiol 8:129–138.  https://doi.org/10.1016/j.tim.2010.05.002 Google Scholar
  11. Criswell AR, Bae E, Stec B, Konisky J, Phillips GN Jr (2003) Structures of thermophilic and mesophilic adenylate kinases from the genus Methanococcus. J Mol Biol 330:1087–1099.  https://doi.org/10.1016/S0022-2836(03)00655-7 CrossRefGoogle Scholar
  12. Cuellar J, Yébenes H, Parker SK, Carranza G, Serna M, Valpuesta JM, Zabala JC, Detrich HW III (2014) Assisted protein folding at low temperature: evolutionary adaptation of the Antarctic fish chaperonin CCT and its client proteins. Biol Open 3(4):261–270.  https://doi.org/10.1242/bio.20147427 CrossRefGoogle Scholar
  13. Dekker C, Stirling PC, McCormack EA, Filmore H, Paul A, Brost RL, Costanzo M, Boone C, Leroux MR, Willison KR (2008) The interaction network of the chaperonin CCT. EMBO J 27:1827–1839.  https://doi.org/10.1038/emboj.2008.108 CrossRefGoogle Scholar
  14. Dougherty DA (1996) Cation-pi Interactions in Chemistry and Biology: A new view of benzene, phe, tyr, and trp. Science 271(5246):163–168.  https://doi.org/10.1126/science.271.5246.163
  15. Dougherty DA, Stauffer DA (1990) Acetylcholine binding by a synthetic receptor. Implications for biological recognition. Science 250(4987):1558–1560. PMID:2274786Google Scholar
  16. Dunn AY, Melville MW, Frydman J (2001) Review: cellular substrates of the eukaryotic chaperonin TRiC/CCT. J Struct Biol 135:176–184.  https://doi.org/10.1006/jsbi.2001.4380 CrossRefGoogle Scholar
  17. Eisenberg D, Luthy R, Bowie JU (1997) Verify3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404.  https://doi.org/10.1016/S0076-6879(97)77022-8 CrossRefGoogle Scholar
  18. Elcock AH (1998) The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins. J Mol Biol 284:489–502. PMID:9813132Google Scholar
  19. Feldman DE, Thulasiraman V, Ferreyra RG, Frydman J (1999) Formation of the VHL-elongin BC tumor suppressor complex is mediated by the chaperonin TRiC. Mol Cell 4:1051–1061.  https://doi.org/10.1016/S1097-2765(00)80233-6 CrossRefGoogle Scholar
  20. Fields PA, Somero GN (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes. Proc Natl Acad Sci USA 95:11476–11481.  https://doi.org/10.1073/pnas.95.19.11476 CrossRefGoogle Scholar
  21. Firdaus-Raih M, Hashim NHF, Bharudin I, Abu Bakar MF, Huang KK, Alias H et al (2018) The Glaciozyma antarctica genome reveals an array of systems that provide sustained responses towards temperature variations in a persistently cold habitat. PLoS ONE 13(1):e0189947.  https://doi.org/10.1371/journal.pone.0189947 CrossRefGoogle Scholar
  22. Frydman J, Nimmesgern E, Ohtsuka K, Hartl FU (1994) Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370:111–117.  https://doi.org/10.1038/370111a0 CrossRefGoogle Scholar
  23. Fulda S, Gorman AM, Hori O & Samali A (2010) Cellular stress responses: cell survival and cell death. International Journal of Cell Biology, vol. 2010, 214074, 23.  https://doi.org/10.1155/2010/214074
  24. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD and Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: John WM (ed) The proteomics protocols handbook, Humana press, pp 571-607Google Scholar
  25. Goodchild A, Raftery M, Saunders NFW, Guilhaus M, Cavicchioli R (2004) Biology of the cold adapted archaeon, Methanococcus burtonii determined by proteomics using liquid chromatography-tandem mass spectrometry. J Proteome Res 3(6):1164–1176.  https://doi.org/10.1021/pr0498988 CrossRefGoogle Scholar
  26. Guenther MG, Yu J, Kao GD, Yen TJ, Lazar MA (2002) Assembly of the SMRT-histone deacetylase 3 repression complex requires the TCP-1 ring complex. Genes Dev 16:3130–3135.  https://doi.org/10.1101/gad.1037502 CrossRefGoogle Scholar
  27. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723.  https://doi.org/10.1002/elps.1150181505 CrossRefGoogle Scholar
  28. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–580.  https://doi.org/10.1038/381571a0 CrossRefGoogle Scholar
  29. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858.  https://doi.org/10.1126/science.1068408 CrossRefGoogle Scholar
  30. Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16(6):574–581.  https://doi.org/10.1038/nsmb.1591
  31. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332.  https://doi.org/10.1038/nature10317 CrossRefGoogle Scholar
  32. Hashim N, Bharudin I, Nguong D, Higa S, Bakar F, Nathan S, Rabu A, Kawahara H, Illias R, Najimudin N, Mahadi N, Murad A (2013) Characterization of Afp1, an antifreeze protein from the psychrophilic yeast Glaciozyma antarctica PI12. Extremophiles 17:63–73.  https://doi.org/10.1007/s00792-012-0494-4 CrossRefGoogle Scholar
  33. Hensen SM, Heldens L, van Enckevort CM, van Genesen ST, Pruijn GJ, Lubsen NH (2013) Activation of the antioxidant response in methionine deprived human cells results in an HSF1-independent increase in HSPA1A mRNA levels. Biochimie 95:1245–1251.  https://doi.org/10.1016/j.biochi.2013.01.017 CrossRefGoogle Scholar
  34. Jolly C & Morimoto RI (2000) Role of the heat shock response and molecular chaperones in oncogenesis and cell Death. J Natl Cancer Inst. 92(19): 1564–1572.  https://doi.org/10.1093/jnci/92.19.1564
  35. Jones PG, Inouye M (1994) The cold-shock response-a hot topic. Mol Microbiol 11:811–818.  https://doi.org/10.1111/j.1365-2958.1994.tb00359.x CrossRefGoogle Scholar
  36. Kalisman N, Adams CM, Levitt M (2012) Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry and combinatorial homology modeling. Proc Natl Acad Sci U S A 109:2884–2889.  https://doi.org/10.1073/pnas.1119472109 CrossRefGoogle Scholar
  37. Kalisman N, Schröder GF, Levitt M (2013) The crystal structures of the eukaryotic chaperonin CCT reveal its functional partitioning. Structure 21(4):540–549.  https://doi.org/10.1016/j.str.2013.01.017
  38. Kalman M, Ben-Tal N (2010) Quality assessment of protein model-structures using evolutionary conservation. Bioinformatics 26(10):1299–1307.  https://doi.org/10.1093/bioinformatics/btq114 CrossRefGoogle Scholar
  39. Kawamoto J, Kurihara T, Kitagawa M, Kato I, Esaki N (2007) Proteomic studies of an Antarctic cold-adapted bacterium, Shewanella livingstonensis Ac10, for global identification of cold-inducible proteins. Extremophiles 11:819–826.  https://doi.org/10.1007/s00792-007-0098-6 CrossRefGoogle Scholar
  40. Lanzarotti E, Biekofsky RR, Estrin DA, Marti MA, Turjanski AG (2011) Aromatic-aromatic interactions in proteins: beyond the dimer. J Chem Inf Model 51:1623–1633.  https://doi.org/10.1021/ci200062e CrossRefGoogle Scholar
  41. Laskowski RA, MacArthur MW, Moss DS & Thornton JM (1993). PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291.  https://doi.org/10.1107/S0021889892009944
  42. Leitner A, Joachimiak LA, Bracher A, Mönkemeyer L, Walzthoeni T, Chen B, Pechmann S, Holmes S, Cong Y, Ma B (2012) The molecular architecture of the eukaryotic chaperonin TRiC/CCT. Struc 20:814–825.  https://doi.org/10.1016/j.str.2012.03.007 CrossRefGoogle Scholar
  43. Ma JC, Dougherty DA (1997) The Cation−π interaction. Chem Rev 97(5):1303–1324.  https://doi.org/10.1021/cr9603744
  44. Matthews BW (2001) Hydrophobic interactions in proteins. In: eLS. John Wiley & Sons Ltd, Chichester.  https://doi.org/10.1038/npg.els.0002975
  45. Melki R, Cowan NJ (1994) Facilitated folding of actins and tubulins occurs via a nucleotide- dependent interaction between cytoplasmic chaperonin and distinctive folding intermediates. Mol Cell Biol 14:2895-2904. PMCID: PMC358657Google Scholar
  46. Melo F, Devos D, Depiereux E, Feytmans E (1997) ANOLEA: a www server to assess protein structures. Proc Int Conf Intell Syst Mol Bio 5:187–190.  https://doi.org/10.1093/nar/gkh440 Google Scholar
  47. Melo F, Feytmans E (1998) Assessing protein structures with a non-local atomic interaction energy. J Mol Biol 277:1141–1152.  https://doi.org/10.1006/jmbi.1998.1665 CrossRefGoogle Scholar
  48. Morris AL, MacArthur MW, Hutchinson EG, Thornton JM (1992) Stereochemical quality of protein structure coordinates. Proteins Struct Funct Genet 12(4):345–364.  https://doi.org/10.1002/prot.340120407
  49. Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6:125–136Google Scholar
  50. Phadtare S, Inouye M (2008) The cold shock response. EcoSal Plus 3.  https://doi.org/10.1128/ecosalplus.5.4.2
  51. Phadtare S, Alsina J, Inouye M (1999) Cold shock response and cold shock proteins. Curr Opin Microbiol 2(2):175–180.  https://doi.org/10.1016/S1369-5274(99)80031-9 CrossRefGoogle Scholar
  52. Perl D, Mueller U, Heinemann U, Schmid FX (2000) Two exposed amino acid residues confer thermostability on a cold shock protein. Nat Struct Bio 7:380–383.  https://doi.org/10.1038/75151 CrossRefGoogle Scholar
  53. Pettersen EF, Dgoddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Thomas EF (2004) UCSF Chimera-A visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612.  https://doi.org/10.1002/jcc.20084 CrossRefGoogle Scholar
  54. Piette F, D’Amico S, Mazzucchelli G, Danchin A, Leprince P, Feller G (2011) Life in the cold: a proteomic study of cold-repressed proteins in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Appl Environ Microbiol 77(11):3881–3883.  https://doi.org/10.1128/AEM.02757-10 CrossRefGoogle Scholar
  55. Privalov PL (1990) Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25(4):281–305.  https://doi.org/10.3109/10409239009090612 CrossRefGoogle Scholar
  56. Pucciarelli S, Marziale F, Di Giuseppe G, Barchetta S, Miceli C (2005) Ribosomal cold- adaptation: characterization of the genes encoding the acidic ribosomal P0 and P2 proteins from the Antarctic ciliate Euplotes focardii. Gene 360(2):103–110.  https://doi.org/10.1016/j.gene.2005.06.007 CrossRefGoogle Scholar
  57. Pucciarelli S, Parker SK, Detrich HW III, Melki R (2006) Characterization of the cytoplasmic chaperonin containing TCP-1 from the Antarctic fish Nototheinia coriiceps. Extremophiles 10(6):537–549.  https://doi.org/10.1007/s00792-006-0528-x CrossRefGoogle Scholar
  58. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33(2):116–120.  https://doi.org/10.1093/nar/gki442 CrossRefGoogle Scholar
  59. Ramli A, Mahadi N, Shamsir M, Rabu A, Joyce-Tan K, Murad A, Illias R (2012) Structural prediction of a novel chitinase from the psychrophilic Glaciozyma antarctica PI12 and an analysis of its structural properties and function. J Comput Aided Mol Des 26(8):947–961.  https://doi.org/10.1007/s10822-012-9585-7 CrossRefGoogle Scholar
  60. Ringer AL, Senenko A, Sherrill CD (2007) Models of S/π interactions in protein structures: comparison of the H2S–benzene complex with PDB data. Prot Soc 16(10):2216–2223.  https://doi.org/10.1110/ps.073002307 CrossRefGoogle Scholar
  61. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 3113:3381–3385.  https://doi.org/10.1093/nar/gkg520 CrossRefGoogle Scholar
  62. Slutsky MM, Marsh ENG (2004) Cation-π interactions studied in a model coiled-coil peptide. Protein Sci 13(8):2244–2251.  https://doi.org/10.1110/ps.04702104
  63. Somero GN (2004) Adaptation of enzymes to temperature: searching for basic “strategies”. Comp Biochem Physiol 139B:321–333.  https://doi.org/10.1016/j.cbpc.2004.05.003 CrossRefGoogle Scholar
  64. Sonnhammer EL, Eddy SR, Durbin R (1997) Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins 28(3):405–420.  https://doi.org/10.1093/nar/30.1.276 CrossRefGoogle Scholar
  65. Spiess C, Meyer AS, Reissmann S, Frydman J (2004) Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol 14(11):598–604.  https://doi.org/10.1016/j.tcb.2004.09.015 CrossRefGoogle Scholar
  66. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680.  https://doi.org/10.1093/nar/22.22.4673 CrossRefGoogle Scholar
  67. Thulasiraman V, Yang CF, Frydman J (1999) In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO Jour 18:85–95.  https://doi.org/10.1093/emboj/18.1.85 CrossRefGoogle Scholar
  68. Tomoyasu T, Mogk A, Langen H, Goloubino P, Bukau B (2001) Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol Microbiol 40:397–413.  https://doi.org/10.1046/j.1365-2958.2001.02383.x CrossRefGoogle Scholar
  69. Tsai C, Aslam K, Drendel HM, Asiago JM, Goode KM, Paul LN, Rochet JC, Hazbun TR (2015) Hsp31 is a stress response chaperone that intervenes in the protein Misfolding process. J Biol Chem 290(41):24816–24834.  https://doi.org/10.1074/jbc.M115.678367 CrossRefGoogle Scholar
  70. Valpuesta JM, Martín-Benito J, Gómez-Puertas P, Carrascosa JL, Willison KR (2002) Structure and function of a protein folding machine: the eukaryotic cytosolic chaperonin CCT. FEBS Lett 529:11–16.  https://doi.org/10.1016/S0014-5793(02)03180-0 CrossRefGoogle Scholar
  71. Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for Thermostability. Microbiol Mol Biol Rev 65(1):143–143.  https://doi.org/10.1128/MMBR.65.1.1-43.2001 CrossRefGoogle Scholar
  72. Yam AY, Xia Y, Lin HT, Burlingame A, Gerstein M, Frydman J (2008) Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nat Struct & Mol Biol 15:1255–1262.  https://doi.org/10.1038/nsmb.1515 CrossRefGoogle Scholar
  73. Yébenes H, Mesa P, Muñoz IG, Montoya G, Valpuesta JM (2011) Chaperonins: two rings for folding. Trends Biochem Sci 36:424–432.  https://doi.org/10.1016/j.tibs.2011.05.003 CrossRefGoogle Scholar
  74. Yusof NA, Abu Bakar FD, Mahadi NM, Murad AMA (2017) Comparative modeling of TCP1 ring complex (TRiC) from a psychrophilic yeast, Glaciozyma antarctica. Transactions on Science and Technology 4(3–3):324–329 ISSN 2289-8786Google Scholar
  75. Yusof NA, Abu Bakar FD, Illias RM, Mahadi NM, Murad AMA (2015) In silico characterisation of the Glaciozyma antarctica genome: mining the molecular chaperones. Malaysian Applied Biology 44(1):161–165 ISSN 0126-8643Google Scholar
  76. Zacharias N, Dougherty DA (2002) Cation–π interactions in ligand recognition and catalysis. Trends Pharmacol Sci 23(6):281–287.  https://doi.org/10.1016/s0165-6147(02)02027-8
  77. Zauhar RJ, Colbert CL, Morgan RS, Welsh WJ (2000) Evidence for a strong sulfur–aromatic interaction derived from crystallographic data. Biopolymers 53:233–248.  https://doi.org/10.1002/(SICI)1097-0282(200003)53:3<233::AID-BIP3>3.0.CO;2-4 CrossRefGoogle Scholar
  78. Zheng S, Ponder MA, Shih JY, Tiedje JM, Thomashow MF, Lubman DM (2007) A proteomic analysis of Psychrobacter articus 273-4 adaptation to low temperature and salinity using a 2-D liquid mapping approach. Electrophoresis 28:467–488.  https://doi.org/10.1002/elps.200600173 CrossRefGoogle Scholar
  79. Zhuravleva A, Radford SE (2014) How TRiC folds tricky proteins. Cell 159(6):1251–1252.  https://doi.org/10.1016/j.cell.2014.11.029 CrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2019

Authors and Affiliations

  1. 1.Biotechnology Research InstituteUniversiti Malaysia SabahKota KinabaluMalaysia
  2. 2.School of Biosciences and Biotechnology, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  3. 3.Malaysia Genome InstituteKajangMalaysia

Personalised recommendations