Rosmarinic acid and siRNA combined therapy represses Hsp27 (HSPB1) expression and induces apoptosis in human glioma cells

Original Paper
  • 50 Downloads

Abstract

High expression of Hsp27 in glioma cells has been closely associated with tumor cell proliferation and apoptosis inhibition. The aim of the present study was to asses the effects of rosmarinic acid (RA) on Hsp27 expression and apoptosis in non-transfected and transfected human U-87 MG cells. The effect of rosmarinic acid was compared to quercetin, which is known to be a good Hsp27 inhibitor. In order to block the expression of Hsp27 gene (HSPB1), transfection with specific siRNAs was performed. Western blotting technique was used to assess the Hsp27 expression, and caspase-3 colorimetric activity assay was performed to determine apoptosis induction. According to the results, it was found that RA and quercetin effectively silenced Hsp27 and both agents induced apoptosis by activating the caspase-3 pathway. Eighty and 215 μM RA decreased the level of Hsp27 by 28.8 and 46.7% and induced apoptosis by 30 and 54%, respectively. For the first time, we reported that rosmarinic acid has the ability to trigger caspase-3 induced apoptosis in human glioma cells. As a result of siRNA transfection, the Hsp27 gene was silenced by ~ 50% but did not cause a statistically significant change in caspase-3 activation. It was also observed that apoptosis was induced at a higher level as a result of Hsp27 siRNA and subsequent quercetin or RA treatment. siRNA transfection and 215 μM RA treatment suppressed Hsp27 expression level by 90.5% and increased caspase-3 activity by 58%. Herein, we demonstrated that RA administered with siRNA seems to be a potent combination for glioblastoma therapy.

Keywords

Rosmarinic acid Quercetin siRNA Hsp27 Glioma Apoptosis 

Abbreviations

Hsp27

Heat shock protein 27

GBM

Glioblastoma

RA

Rosmarinic acid

RNAi

RNA interference

siRNA

Small interfering RNA

IC50

The half-maximal inhibitory concentration

GAPDH

Glyceraldehyde 3-phosphate dehydrogenase

Notes

Acknowledgments

This work was supported by the Istanbul University Research Foundation, Turkey (Project Number: 57959). We are grateful to Yeditepe University for their generous gift of U-87 MG cell line.

Supplementary material

12192_2018_896_MOESM1_ESM.docx (430 kb)
ESM 1 (DOCX 429 kb)

References

  1. Airoldi C, Sironi E, Dias C, Marcelo F, Martins A, Rauter AP, Nicotra F, Jimenez-Barbero J (2013) Natural compounds against Alzheimer’s disease: molecular recognition of Aβ1-42 peptide by Salvia sclareoides extract and its major component, rosmarinic acid, as investigated by NMR. Chem Asian J 8(3):596–602.  https://doi.org/10.1002/asia.201201063 CrossRefPubMedGoogle Scholar
  2. Bądziul D, Jakubowicz-Gil J, Paduch R, Głowniak K, Gawron A (2014) Combined treatment with quercetin and imperatorin as a potent strategy for killing HeLa and Hep-2 cells. Mol Cell Biochem 392(1–2):213–227.  https://doi.org/10.1007/s11010-014-2032-4 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Behnsawy HM, Miyake H, Kusuda Y, Fujisawa M (2013) Small interfering RNA targeting heat shock protein 70 enhances chemosensitivity in human bladder cancer cells. Urol Oncol 31(6):843–848.  https://doi.org/10.1016/j.urolonc.2011.07.007 CrossRefPubMedGoogle Scholar
  4. Ben Salem I, Prola A, Boussabbeh M, Guilbert A, Bacha H, Abid-Essefi S, Lemaire C (2015) Crocin and Quercetin protect HCT116 and HEK293 cells from Zearalenone-induced apoptosis by reducing endoplasmic reticulum stress. Cell Stress Chaperones 20(6):927–938.  https://doi.org/10.1007/s12192-015-0613-0 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Berdowska I, Zieliński B, Fecka I, Kulbacka J, Saczko J, Gamian A (2013) Cytotoxic impact of phenolics from Lamiaceae species on human breast cancer cells. Food Chem 141(2):1313–1321.  https://doi.org/10.1016/j.foodchem.2013.03.090 CrossRefPubMedGoogle Scholar
  6. Chen KL, Li HX, Xu XL, Zhou GH (2014) The protective effect of rosmarinic acid on hyperthermia-induced C2C12 muscle cells damage. Mol Biol Rep 41(8):5525–5531.  https://doi.org/10.1007/s11033-014-3429-6 CrossRefPubMedGoogle Scholar
  7. Chowdhury SA, Kishino K, Satoh R, Hashimoto K, Kikuchi H, Nishikawa H, Shirataki Y, Sakagami H (2005) Tumor-specificity and apoptosis-inducing activity of stilbenes and flavonoids. Anticancer Res 25(3B):2055–2063PubMedGoogle Scholar
  8. Combs SE, Schmid TE, Vaupel P, Multhoff G (2016) Stress response leading to resistance in glioblastoma—the need for innovative radiotherapy (iRT) concepts. Cancers (Basel) 8(1):15.  https://doi.org/10.3390/cancers8010015 CrossRefGoogle Scholar
  9. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498.  https://doi.org/10.1038/35078107 CrossRefPubMedGoogle Scholar
  10. Furtado RA, Oliveira BR, Silva LR, Cleto SS, Munari CC, Cunha WR, Tavares DC (2015) Chemopreventive effects of rosmarinic acid on rat colon carcinogenesis. J Cancer Prev 24(2):106–112.  https://doi.org/10.1097/CEJ.0000000000000055 CrossRefGoogle Scholar
  11. Gao LP, Wei HL, Zhao HS, Xiao SY, Zheng RL (2005) Antiapoptotic and antioxidant effects of rosmarinic acid in astrocytes. Pharmazie 60(1):62–65PubMedGoogle Scholar
  12. Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G (2006) Heat shock proteins 27 and 70: anti-apoptotic proteins with tumourigenic properties. Cell Cycle 5(22):2592–2601.  https://doi.org/10.4161/cc.5.22.3448 CrossRefPubMedGoogle Scholar
  13. Ghaffari H, Venkataramana M, Jalali Ghassam B, Chandra Nayaka S, Nataraju A, Geetha NP, Prakash HS (2014) Rosmarinic acid mediated neuroprotective effects against H2O2-induced neuronal cell damage in N2A cells. Life Sci 113(1–2):7–13.  https://doi.org/10.1016/j.lfs.2014.07.010 CrossRefPubMedGoogle Scholar
  14. Graner MW, Alzate O, Dechkovskaia AM, Keene JD, Sampson JH, Mitchell DA, Bigner DD (2009) Proteomic and immunologic analyses of brain tumor exosomes. FASEB J 23(5):1541–1557.  https://doi.org/10.1096/fj.08-122184 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gupta C, Vikram A, Tripathi DN, Ramarao P, Jena GB (2010) Antioxidant and antimutagenic effect of quercetin against DEN induced hepatotoxicity in rat. Phytother Res 24(1):119–128.  https://doi.org/10.1002/ptr.2883 CrossRefPubMedGoogle Scholar
  16. Hosaka S, Nakatsura T, Tsukamoto H, Hatayama T, Baba H, Nishimura Y (2006) Synthetic small interfering RNA targeting heat shock protein 105 induces apoptosis of various cancer cells both in vitro and in vivo. Cancer Sci 97(7):623–632CrossRefPubMedGoogle Scholar
  17. Jakubowicz-Gil J, Paduch R, Piersiak T, Głowniak K, Gawron A, Kandefer-Szerszeń M (2005) The effect of quercetin on pro-apoptotic activity of cisplatin in HeLa cells. Biochem Pharmacol 69(9):1343–1350.  https://doi.org/10.1016/j.bcp.2005.01.022 CrossRefPubMedGoogle Scholar
  18. Jakubowicz-Gil J, Rzeski W, Zdzisińska B, Piersiak T, Weiksza K, Glowniak K, Gawron A (2008) Different sensitivity of neurons and neuroblastoma cells to quercetin treatment. Acta Neurobiol Exp (Wars) 68(4):463–476Google Scholar
  19. Jakubowicz-Gil J, Langner E, Wertel I, Piersiak T, Rzeski W (2010) Temozolomide, quercetin and cell death in the MOGGCCM astrocytoma cell line. Chem Biol Interact 188(1):190–203.  https://doi.org/10.1016/j.cbi.2010.07.015 CrossRefPubMedGoogle Scholar
  20. Jakubowicz-Gil J, Langner E, Bądziul D, Wertel I, Rzeski W (2013a) Silencing of Hsp27 and Hsp72 in glioma cells as a tool for programmed cell death induction upon temozolomide and quercetin treatment. Toxicol Appl Pharmacol 273(3):580–589.  https://doi.org/10.1016/j.taap.2013.10.003 CrossRefPubMedGoogle Scholar
  21. Jakubowicz-Gil J, Langner E, Bądziul D, Wertel I, Rzeski W (2013b) Apoptosis induction in human glioblastoma multiforme T98G cells upon temozolomide and quercetin treatment. Tumour Biol 34(4):2367–2378.  https://doi.org/10.1007/s13277-013-0785-0 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jego G, Hazoumé A, Seigneuric R, Garrido C (2013) Targeting heat shock proteins in cancer. Cancer Lett 332(2):275–285.  https://doi.org/10.1016/j.canlet.2010.10.014 CrossRefPubMedGoogle Scholar
  23. Khalil AA (2007) Biomarker discovery: a proteomic approach for brain cancer profiling. Cancer Sci 98(2):201–213.  https://doi.org/10.1111/j.1349-7006.2007.00374.x CrossRefPubMedGoogle Scholar
  24. Khalil AA, Kabapy NF, Deraz SF, Smith C (2011) Heat shock proteins in oncology: diagnostic biomarkers or therapeutic targets? Biochim Biophys Acta 1816(2):89–104PubMedGoogle Scholar
  25. Khan F, Niaz K, Maqbool F, Ismail Hassan F, Abdollahi M, Nagulapalli Venkata KC, Nabavi SM, Bishayee A (2016) Molecular targets underlying the anticancer effects of quercetin: an update. Nutrients 8(9):529–548.  https://doi.org/10.3390/nu8090529 CrossRefPubMedCentralGoogle Scholar
  26. Kim LS, Kim JH (2011) Heat shock protein as molecular targets for breast cancer therapeutics. Breast Cancer 14(3):167–174.  https://doi.org/10.4048/jbc.2011.14.3.167 CrossRefGoogle Scholar
  27. Kim DS, Kim HR, Woo ER, Hong ST, Chae HJ, Chae SW (2005) Inhibitory effects of rosmarinic acid on adriamycin-induced apoptosis in H9c2 cardiac muscle cells by inhibiting reactive oxygen species and the activations of c-Jun N-terminal kinase and extracellular signal-regulated kinase. Biochem Pharmacol 70(7):1066–1078.  https://doi.org/10.1016/j.bcp.2005.06.026 CrossRefPubMedGoogle Scholar
  28. Kim EJ, Choi CH, Park JY, Kang SK, Kim YK (2008) Underlying mechanism of quercetin-induced cell death in human glioma cells. Neurochem Res 33(6):971–979.  https://doi.org/10.1007/s11064-007-9416-8 CrossRefPubMedGoogle Scholar
  29. Kim JJ, Lee SB, Park JK, Yoo YD (2010) TNF-alpha-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-X(L). Cell Death Differ 17(9):1420–1434.  https://doi.org/10.1038/cdd.2010.19 CrossRefPubMedGoogle Scholar
  30. Kumano M, Furukawa J, Shiota M, Zardan A, Zhang F, Beraldi E, Wiedmann RM, Fazli L, Zoubeidi A, Gleave ME (2012) Cotargeting stress-activated Hsp27 and autophagy as a combinatorial strategy to amplify endoplasmic reticular stress in prostate cancer. Mol Cancer Ther 11(8):1661–1671.  https://doi.org/10.1158/1535-7163.MCT-12-0072 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Li J, Tang C, Li L, Li R, Fan Y (2016) Quercetin blocks t-AUCB-induced autophagy by Hsp27 and Atg7 inhibition in glioblastoma cells in vitro. J Neuro-Oncol 129(1):39–45.  https://doi.org/10.1007/s11060-016-2149-2 CrossRefGoogle Scholar
  32. Lianos GD, Alexiou GA, Mangano A, Mangano A, Rausei S, Boni L, Dionigi G, Roukos DH (2015) The role of heat shock proteins in cancer. Cancer Lett 360(2):114–118.  https://doi.org/10.1016/j.canlet.2015.02.026 CrossRefPubMedGoogle Scholar
  33. Lin CS, Kuo CL, Wang JP, Cheng JS, Huang ZW, Chen CF (2007) Growth inhibitory and apoptosis inducing effect of Perilla frutescens extract on human hepatoma HepG2 cells. J Ethnopharmacol 112(3):557–567.  https://doi.org/10.1016/j.jep.2007.05.008 CrossRefPubMedGoogle Scholar
  34. Mauro C, Crescenzi E, De Mattia R, Pacifico F, Mellone S, Salzano S, de Luca C, D'Adamio L, Palumbo G, Formisano S, Vito P, Leonardi A (2006) Central role of the scaffold protein tumor necrosis factor receptor-associated factor 2 in regulating endoplasmic reticulum stress-induced apoptosis. J Biol Chem 281(5):2631–2638CrossRefPubMedGoogle Scholar
  35. McConnell JR, McAlpine SR (2013) Heat shock proteins 27, 40, and 70 as combinational and dual therapeutic cancer targets. Bioorg Med Chem Lett 23(7):1923–1928.  https://doi.org/10.1016/j.bmcl.2013.02.014 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Moon DO, Kim MO, Lee JD, Choi YH, Kim GY (2010) Rosmarinic acid sensitizes cell death through suppression of TNF-alpha-induced NF-kappaB activation and ROS generation in human leukemia U937 cells. Cancer Lett 288(2):183–191.  https://doi.org/10.1016/j.canlet.2009.06.033 CrossRefPubMedGoogle Scholar
  37. Moore J, Yousef M, Tsiani E (2016) Anticancer effects of rosemary (Rosmarinus officinalis L.) extract and rosemary extract polyphenols. Nutrients 8(11):E731.  https://doi.org/10.3390/nu8110731 CrossRefPubMedGoogle Scholar
  38. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival application to proliferation and cytotoxicity assay. J Immunol Methods 65(1–2):55–63CrossRefPubMedGoogle Scholar
  39. Önay-Uçar E (2015) Heat shock proteins and cancer: plant based therapy. In: Asea AAA, Calderwoo SK (eds) Heat shock protein-based therapies, 9rd edn. Springer, Switzerland, pp 27–48 ISBN: 978-3-319-17210-1CrossRefGoogle Scholar
  40. Oyadomari S, Araki E, Mori M (2002) Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 7(4):335–345CrossRefPubMedGoogle Scholar
  41. Petersen M, Simmonds MS (2003) Rosmarinic acid. Phytochemistry 62(2):121–125CrossRefPubMedGoogle Scholar
  42. Rao RV, Castro-Obregon S, Frankowski H, Schuler M, Stoka V, del Rio G, Bredesen DE, Ellerby HM (2002) Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J Biol Chem 277(24):21836–21842CrossRefPubMedGoogle Scholar
  43. Rocchi P, Jugpal P, So A, Sinneman S, Ettinger S, Fazli L, Nelson C, Gleave M (2006) Small interference RNA targeting heat-shock protein 27 inhibits the growth of prostatic cell lines and induces apoptosis via caspase-3 activation in vitro. BJU Int 98(5):1028–1089CrossRefGoogle Scholar
  44. Runtuwene J, Cheng KC, Asakawa A, Amitani H, Amitani M, Morinaga A, Takimoto Y, Kairupan BH, Inui A (2016) Rosmarinic acid ameliorates hyperglycemia and insulin sensitivity in diabetic rats, potentially by modulating the expression of PEPCK and GLUT4. Drug Des Dev Ther 10:2193–2202.  https://doi.org/10.2147/DDDT.S108539 CrossRefGoogle Scholar
  45. Samali A, Cotter TG (1996) Heat shock proteins increase resistance to apoptosis. Exp Cell Res 223(1):163–170CrossRefPubMedGoogle Scholar
  46. Scheckel KA, Degner SC, Romagnolo DF (2008) Rosmarinic acid antagonizes activator protein-1-dependent activation of cyclooxygenase-2 expression in human cancer and nonmalignant cell lines. J Nutr 138(11):2098–2105.  https://doi.org/10.3945/jn.108.090431 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sun G, Yeh SY, Yuan CW, Chiu MJ, Yung BS, Yen Y (2015) Molecular properties, functional mechanisms, and applications of sliced siRNA. Mol Ther Nucleic Acids 4:e221.  https://doi.org/10.1038/mtna.2014.73 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7(9):880–885.  https://doi.org/10.1038/sj.embor.7400779 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Tepe B, Eminagaoglu O, Akpulat HA, Aydin E (2007) Antioxidant potentials and rosmarinic acid levels of the methanolic extracts of Salvia verticillata (L.) subsp. verticillata and S. verticillata (L.) subsp. amasiaca (Freyn & Bornm.) Bornm. Food Chem 100(3):985–989CrossRefGoogle Scholar
  50. Tumur Z, Guerra C, Yanni P, Eltejaye A, Waer C, Alkam T, Henson BS (2015) Rosmarinic acid inhibits cell growth and migration in head and neck squamous cell carcinoma cell lines by attenuating epidermal growth factor receptor signaling. J Cancer Sci Ther 7(12):367–374.  https://doi.org/10.4172/1948-5956.1000376 CrossRefGoogle Scholar
  51. Uçar EÖ, Arda N, Aitken A (2012) Extract from mistletoe, Viscum album L., reduces Hsp27 and 14-3-3 protein expression and induces apoptosis in C6 rat glioma cells. Genet Mol Res 11(3):2801–2813CrossRefPubMedGoogle Scholar
  52. Van der Sanden MH, Houweling M, Van Golde LM, Vaandrager AB (2003) Inhibition of phosphatidylcholine synthesis induces expression of the endoplasmic reticulum stress and apoptosis-related protein CCAAT/enhancer-binding protein-homologous protein (CHOP/GADD153). Biochem J 369(Pt 3):643–650.  https://doi.org/10.1042/BJ20020285 CrossRefPubMedPubMedCentralGoogle Scholar
  53. van Horssen R, Ten Hagen TL, Eggermont AM (2006) TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist 11(4):397–408.  https://doi.org/10.1634/theoncologist.11-4-397 CrossRefPubMedGoogle Scholar
  54. Vargas A, Burd R (2010) Hormesis and synergy: pathways and mechanisms of quercetin in cancer prevention and management. Nutr Rev 68(7):418–428.  https://doi.org/10.1111/j.1753-4887.2010.00301.x CrossRefPubMedGoogle Scholar
  55. Venkatachalam K, Gunasekaran S, Namasivayamn N (2016) Biochemical and molecular mechanisms underlying the chemopreventive efficacy of rosmarinic acid in a rat colon cancer. Eur J Pharmacol 791:37–50.  https://doi.org/10.1016/j.ejphar.2016.07.051 CrossRefPubMedGoogle Scholar
  56. Wang Z, Raoi DD, Senzer N, Nemunaitis J (2011) RNA interference and cancer therapy. Pharm Res 28(12):2983–2995.  https://doi.org/10.1007/s11095-011-0604-5 CrossRefPubMedGoogle Scholar
  57. Wu SY, Lopez-Berestein G, Calin GA, Sood AK (2014) RNAi therapies: drugging the undruggable. Sci Transl Med 6(240):240ps7.  https://doi.org/10.1126/scitranslmed.3008362 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Xavier CP, Lima CF, Fernandes-Ferreira M, Pereira-Wilson C (2009) Salvia fruticosa, Salvia officinalis, and rosmarinic acid induce apoptosis and inhibit proliferation of human colorectal cell lines: the role in MAPK/ERK pathway. Nutr Cancer 61(4):564–571.  https://doi.org/10.1080/01635580802710733 CrossRefPubMedGoogle Scholar
  59. Yadav RK, Chae SW, Kim HR, Chae HJ (2014) Endoplasmic reticulum stress and cancer. J Cancer Prev 19(2):75–88.  https://doi.org/10.15430/JCP.2014.19.2.75 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Yesil-Celiktas O, Sevimli C, Bedir E, Vardar-Sukan F (2010) Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines. Plant Foods Hum Nutr 65(2):158–163.  https://doi.org/10.1007/s11130-010-0166-4 CrossRefPubMedGoogle Scholar
  61. Zhang R, Tremblay TL, McDermid A, Thibault P, Stanimirovic D (2003) Identification of differentially expressed proteins in human glioblastoma cell lines and tumors. Glia 42(2):194–208.  https://doi.org/10.1002/glia.10222 CrossRefPubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2018

Authors and Affiliations

  1. 1.Department of Molecular Biology and Genetics, Faculty of ScienceIstanbul UniversityIstanbulTurkey

Personalised recommendations