Advertisement

Cell Stress and Chaperones

, Volume 23, Issue 4, pp 455–466 | Cite as

Targeted heat activation of HSP promoters in the skin of mammalian animals and humans

  • Richard Voellmy
  • Olivier Zürcher
  • Manon Zürcher
  • Pierre A. de Viragh
  • Alexis K. Hall
  • Stephen M. Roberts
Perspective and Reflection Article

Abstract

The use of highly inducible HSP promoters for exerting spatial and/or temporal control over the expression of therapeutic transgenes has long been discussed. Localized and time-limited induction of the heat shock response may potentially also be of medical interest. However, such applications would require targeted delivery of heat doses capable of activating HSP promoters in tissues or organs of interest. Accessible areas, including the skin and tissues immediately underneath it, may be most readily targeted. A few applications for heat-directed or heat-controlled therapy in the skin might involve expression of proteins to restore or protect normal skin function, protein antigens for vaccination/immunotherapy, vaccine viruses or even systemically active proteins, e.g., cytokines and chemokines. A review of the literature relating to localized heat activation of HSP promoters and HSP genes in the skin revealed that a multitude of different technologies has been explored in small animal models. In contrast, we uncovered few publications that examine HSP promoter activation in human skin. None of these publications has a therapeutic focus. We present herein two, clinically relevant, developments of heating technologies that effectively activate HSP promoters in targeted regions of human skin. The first development advances a system that is capable of reliably activating HSP promoters in human scalp, in particular in hair follicles. The second development outlines a simple, robust, and inexpensive methodology for locally activating HSP promoters in small, defined skin areas.

Keywords

Targeted heating Skin Human Mammals HSP promoters HSP genes 

Notes

Acknowledgements

We would like to acknowledge the following colleagues for their contributions: Prof. Marco Celio and Dr. Walter Blum, Frimorfo Inc., Marly, Switzerland; Prof. Daniel Hohl, Dr. Marcel Huber and staff, Service de dermatologie et vénéréologie du CHUV, Lausanne, Switzerland; the mechanical engineers of the Haute école d’ingénierie et d’architecture de Fribourg, Switzerland; Lis Schärer; Prof. John Thome, Laboratory of heat and mass transfer, EPFL, Lausanne, Switzerland; and Dr. Nuria Vilaboa, University Hospital La Paz-IdiPAZ, Madrid and CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain.

Funding information

The studies reported herein received funding from the Commission for Technology & Innovation CTI, a Swiss federal agency, and from HSF Pharmaceuticals SA.

RV is the founder of HSF Pharmaceuticals SA, a company with an exclusive focus on research and early development activities.

References

  1. Blake MJ, Gershon D, Fargnoli J, Holbrook NJ (1990) Discordant expression of heat shock protein mRNAs in tissues of heat-stressed rats. J Biol Chem 265(25):15275–15279PubMedGoogle Scholar
  2. Bloom DC, Feller J, McAnany P, Vilaboa N, Voellmy R (2015) Replication-competent controlled herpes simplex virus. J Virol 89:10668–10679CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brade AM, Ngo D, Szmitko P, Li PX, Liu FF, Klamut HJ (2000) Heat-directed gene targeting of adenoviral vectors to tumor cells. Cancer Gene Ther 7(12):1566–1574.  https://doi.org/10.1038/sj.cgt.7700267 CrossRefPubMedGoogle Scholar
  4. Che J, Doubrovin M, Serganova I, Ageyeva L, Beresten T et al (2007) HSP70-inducible hNIS-IRES-eGFP reporter imaging: response to heat shock. Mol Imaging 6(6):404–416CrossRefPubMedGoogle Scholar
  5. Cicinnati VR, Shen Q, Sotiropoulos GC, Radtke A, Gerken G et al (2008) Validation of putative reference genes for gene expression studies in human hepatocellular carcinoma using real-time quantitative RT-PCR. BMC Cancer 8:350CrossRefPubMedPubMedCentralGoogle Scholar
  6. Deckers R, Quesson B, Arsaut J, Eimer S, Couillaud F et al (2009) Image-guided, noninvasive, spatiotemporal control of gene expression. Proc Natl Acad Sci U S A 106(4):1175–1180CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dewhirst MW, Vigilanti BL, Lora-Michiels M, Hanson M, Hoopes PJ (2003) Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperth 19(3):267–294.  https://doi.org/10.1080/0265673031000119006 CrossRefGoogle Scholar
  8. Fortin PY, Genevois C, Chapolard M, Santalucia T, Planas AM et al (2014) Dual-reporter in vivo imaging of transient and inducible heat-shock promoter activation. Biomed Opt Express 5(2):457–467CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ghavami A, Nutt MP, Hardy SP (2002) Heat shock protein and high dose aspirin: effects on random skin flap survival in a rat model. Ann Plast Surg 48(1):60–67.  https://doi.org/10.1097/00000637-200201000-00009 CrossRefPubMedGoogle Scholar
  10. Guilhon E, Voisin P, de Zwart JA, Quesson B, Salomir R et al (2003) Spatial and temporal control of transgene expression in vivo using a heat-sensitive promoter and MRI-guided focused ultrasound. J Gene Med 5:333–342CrossRefPubMedGoogle Scholar
  11. Hall A (2008) Harnessing the heat shock response to raise refined therapeutic outcomes. Open Access Dissertations. Paper 102. http://scholarlyrepository.miami.edu/oa_dissertations/102
  12. Hantash BM, Vikramaditya PH, Kapadia B, Rahman Z, Jiang K et al (2007) In vivo histological evaluation of a novel ablative fractional resurfacing device. Lasers Surg Med 39(2):96–107.  https://doi.org/10.1002/lsm.20468 CrossRefPubMedGoogle Scholar
  13. Hantash BM, Anan AU, Chang H, Kafi R, Renton B (2009) Bipolarfractional radiofrequency treatment induces neoelastogenesis and neocollagenesis. Lasers Surg Med 41(1):1–9.  https://doi.org/10.1002/lsm.20731 CrossRefPubMedGoogle Scholar
  14. Houghton BL, Meendering JR, Wong BJ, Minson CT (2006) Nitric oxide and noradrenaline contribute to the temperature threshold of the axon reflex response to gradual local heating in human skin. J Physiol 572(3):811–820.  https://doi.org/10.1113/jphysiol.2005.104067 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217–228.  https://doi.org/10.1007/s10103-007-0470-x CrossRefPubMedGoogle Scholar
  16. Jimenez JJ, Roberts SM, Mejia J, Mauro LM, Munson JW, Elgart GW, Connelly EA, Chen Q, Zou J, Goldenberg C, Voellmy R (2008) Prevention of chemotherapy-induced alopecia in rodent models. Cell Stress Chaperones 13(1):31–38.  https://doi.org/10.1007/s12192-007-0005-1 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jimenez F, Iseta A, Poblet E (2011) Morphometric analysis of the human scalp hair follicle: practical implications for the hair transplant surgeon and hair regeneration studies. Dermatol Surg 37:58–64CrossRefPubMedGoogle Scholar
  18. Kim MS, Kim YK, Cho KH, Chung JH (2006) Infrared exposure induces an angiogenic switch in human skin that is partially mediated by heat. Br J Dermatol 155(6):1131–1138.  https://doi.org/10.1111/j.1365-2133.2006.07510.x CrossRefPubMedGoogle Scholar
  19. Koenig WJ, Lohner RA, Perdrizet GA, Lohner ME, Schweitzer RT, Lewis VL Jr (1992) Improving acute skin-flap survival through stress conditioning using heat shock and recovery. Plast Reconstr Surg 90(4):659–664.  https://doi.org/10.1097/00006534-199210000-00016 CrossRefPubMedGoogle Scholar
  20. Laubach HJ, Tannous Z, Anderson RR, Manstein D (2006) Skin response to fractional photothermolysis. Lasers Surg Med 38(2):142–149.  https://doi.org/10.1002/lsm.20254 CrossRefPubMedGoogle Scholar
  21. Lee J, Himori K, Tatebayashi D, Abe M, Yamada T (2015) Response of heat shock protein 72 to repeated bouts of hyperthermia in rat skeletal muscle. Physiol Res 64(6):935–938PubMedGoogle Scholar
  22. Li X, Fang L, Huang L (2015) In vivo histological evaluation of fractional ablative microplasma radio frequency technology using a roller tip: an animal study. Lasers Med Sci 30:2287–2294CrossRefPubMedGoogle Scholar
  23. Mackanos MA, Contag CH (2011) Pulse duration determines the levels of Hsp70 induction in tissues following laser irradiation. J Biomed Opt 16:0708002.  https://doi.org/10.1117/1.3600013 CrossRefGoogle Scholar
  24. Mackanos MA, Helms M, Kalish F, Contag CH (2011) Image-guided genomic analysis of tissue response to laser-induced thermal stress. J Biomed Opt 16(5):058001.  https://doi.org/10.1117/1.3573387 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mackey MA, Moustafa R, Ali K, Austin LA, Near RD, El-Sayed MA (2014) The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments. J Phys Chem B 118(5):1319–1326.  https://doi.org/10.1021/jp409298f CrossRefPubMedPubMedCentralGoogle Scholar
  26. Madio DP, van Gelderen P, DesPres D, Olson AW, de Zwart JA, Fawcett TW, Holbrook NJ, Mandel M, Moonen CTW (1998) On the feasibility of MRI-guided focused ultrasound for local induction of gene expression. J Magn Reson Imaging 8(1):101–104.  https://doi.org/10.1002/jmri.1880080120 CrossRefPubMedGoogle Scholar
  27. Martin-Saavedra FM, Cebrian V, Gomez L, Lopez D, Arruebo M et al (2014) Temporal and spatial patterning of transgene expression by near-infrared irradiation. Biomaterials 35(28):8134–8143CrossRefPubMedPubMedCentralGoogle Scholar
  28. Miyako E, Deguchi T, Nakajima Y, Yudasaka M, Hagihara Y et al (2012) Photothermic regulation of gene expression triggered by laser-induced nanohorns. Proc Natl Acad Sci U S A 109:7523–7528CrossRefPubMedPubMedCentralGoogle Scholar
  29. Moritz A, Henriques F (1947) Studies of thermal injuries II. The relative importance of time and surface temperature in the causation of thermal burns. Am J Pathol 23(5):695–720PubMedPubMedCentralGoogle Scholar
  30. O’Connell-Rodwell CE, Mackanos MA, Simanovskii D, Cao YA, Bachmann MH, Schwettman HA, Contag CH (2008) In vivo analysis of heat-shock-protein-70 induction following pulsed laser irradiation in a transgenic reporter mouse. J Biomed Opt 13(3):030501.  https://doi.org/10.1117/1.2904665 CrossRefPubMedGoogle Scholar
  31. Ortner V, Ludwig A, Riegel E, Dunzinger S, Czerny T (2015) An artificial HSE promoter for efficient and selective detection of heat shock pathway activity. Cell Stress Chaperones 20(2):277–288.  https://doi.org/10.1007/s12192-014-0540-5 CrossRefPubMedGoogle Scholar
  32. Robinson JT, Welsher K, Tabakman SM, Sherlock SP, Wang H, Luong R, Dai H (2010) High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res 3(11):779–793.  https://doi.org/10.1007/s12274-010-0045-1 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Rylander MN, Stafford RJ, Hazle J, Whitney J, Diller KR (2011) Heat shock protein expression and temperature distribution in prostate tumors treated with laser irradiation and nanoshells. Int J Hyperth 27(8):791–801.  https://doi.org/10.3109/02656736.2011.607485 CrossRefGoogle Scholar
  34. Sajjadi AY, Mitra K, Grace M (2013) Expression of heat shock proteins 70 and 47 in tissues following short-pulse laser irradiation: assessment of thermal damage and healing. Med Eng Phys 35(10):1406–1414.  https://doi.org/10.1016/j.medengphy.2013.03.011 CrossRefPubMedGoogle Scholar
  35. Sandre O, Genevois C, Garalo E, Adumeau L, Mornet S, Couillaud F (2017) In vivo imaging of local gene expression induced by magnetic hyperthermia. Genes 8(2):61.  https://doi.org/10.3390/genes8020061 CrossRefPubMedCentralGoogle Scholar
  36. Silcox CE, Smith RC, King R, McDannold N, Bromley P, Walsh K, Hynynen K (2005) MRI-guided ultrasonic heating allows spatial control of exogenous luciferase in canine prostate. Ultrasound Med Biol 31(7):965–970.  https://doi.org/10.1016/j.ultrasmedbio.2005.03.009 CrossRefPubMedGoogle Scholar
  37. Silverstein MG, Ordanes D, Wylie AT, Files DC, Milligan C et al (2014) Inducing muscle heat shock protein 70 improves insulin sensitivity and muscular performance in aged mice. J Gerontol A Biol Sci Med Sci 70:800–808CrossRefPubMedPubMedCentralGoogle Scholar
  38. Smith RC, Machluf M, Bromley P, Atala A, Walsh K (2002) Spatial and temporal control of transgene expression through ultrasound-mediated induction of the heat shock protein 70B promoter in vivo. Hum Gene Ther 13(6):697–706.  https://doi.org/10.1089/104303402317322267 CrossRefPubMedGoogle Scholar
  39. Song CW, Kang MS, Rhee IG, Levitt SH (1980) Effect of hyperthermia on vascular function in normal and neoplastic tissues. Ann N Y Acad Sci 335(1 Thermal Chara):35–47.  https://doi.org/10.1111/j.1749-6632.1980.tb50735.x CrossRefPubMedGoogle Scholar
  40. Song CW, Chelstrom LM, Haumschild DJ (1990) Changes in human skin blood flow by hyperthermia. Int J Radiat Oncol Biol Phys 18(4):903–907.  https://doi.org/10.1016/0360-3016(90)90415-G CrossRefPubMedGoogle Scholar
  41. Starnes AM, Jou PC, Molitoris JK, Lam M, Baron ED, Garcia-Zuazaga J (2012) Acute effects of fractional laser on photoaged skin. Dermatol Surg 38(1):51–57.  https://doi.org/10.1111/j.1524-4725.2011.02136.x CrossRefPubMedGoogle Scholar
  42. Stoll A, Greene L (1959) Relationship between pain and tissue damage due to thermal radiation. J Appl Physiol 14(3):373–382.  https://doi.org/10.1152/jappl.1959.14.3.373 CrossRefPubMedGoogle Scholar
  43. Sundberg JP, Nanney LB, Fleckman P, LE King J (2012) Skin and adnexa. In: Treuting P, Dintzis S, Fervert CW, Liggitt D, Montine KS (eds) Comparative anatomy and histology. A mouse and human atlas. Academic Press, Amsterdam, pp 433–455Google Scholar
  44. Tolson JK, Roberts SM (2005) Manipulating heat shock protein expression in laboratory animals. Methods 35(2):149–157.  https://doi.org/10.1016/j.ymeth.2004.08.005 CrossRefPubMedGoogle Scholar
  45. Tonomura H, Takahashi KA, Mazda O, Arai Y, Masaharu SY et al (2008) Effects of heat stimulation via microwave applicator on cartilage matrix gene and HSP70 expression in the rabbit knee joint. J Orthop Res 26(1):34–41.  https://doi.org/10.1002/jor.20421 CrossRefPubMedGoogle Scholar
  46. Topping A, Gault D, Grobbelaar A, Green C et al (2001) Successful reduction in skin damage resulting from exposure to the normal-mode ruby laser in an animal model. Br J Plast Surg 54(2):144–150.  https://doi.org/10.1054/bjps.2000.3501 CrossRefPubMedGoogle Scholar
  47. Trautinger F, Knobler RM, Königsmann H, Mayr W, Kindas-Mügge I (1996) Increased expression of the 72-kDa heat shock protein and reduced sunburn cell formation in human skin after local hyperthermia. J Invest Dermatol 107(3):442–443.  https://doi.org/10.1111/1523-1747.ep12365498 CrossRefPubMedGoogle Scholar
  48. Vilaboa N, Fenna M, Munson J, Roberts SM, Voellmy R (2005) Novel gene switches for targeted and timed expression of proteins of interest. Mol Ther 12(2):290–298.  https://doi.org/10.1016/j.ymthe.2005.03.029 CrossRefPubMedGoogle Scholar
  49. Villa F, Carrizzo A, Spinelli CC, Ferrario A, Malovini A et al (2015) Genetic analysis reveals a longevity-associated protein modulating endothelial function and angiogenesis. Circ Res 117:333–345CrossRefPubMedPubMedCentralGoogle Scholar
  50. Voellmy R, Bloom DC, Vilaboa N (2015) A novel approach for addressing diseases not yielding to effective vaccination? Immunization by replication-competent controlled virus. Expert Rev Vaccines 14(5):637–651.  https://doi.org/10.1586/14760584.2015.1013941 CrossRefPubMedGoogle Scholar
  51. Wang J, Yao M, Zhang Z, Gu J, Zhang Y, Li B, Sun L, Liu X (2003) Enhanced suicide therapy by chimeric tumor-specific promoter based on HSF1 transcriptional regulation. FEBS Lett 546(2-3):315–320.  https://doi.org/10.1016/S0014-5793(03)00606-9 CrossRefPubMedGoogle Scholar
  52. Wilmink GJ, Opalenik SR, Backham JT, Mackanos MA (2008) In vivo optical imaging of hsp70 expression to assess collateral tissue damage associated with infrared laser ablation of skin. J Biomed Opt 13(5):054066.  https://doi.org/10.1117/1.2992594 CrossRefPubMedGoogle Scholar
  53. Wilson N, McArdle A, Guerin D, Tasker H, Wareing P, Foster CS, Jackson MJ, Rhodes LE (2000) Hyperthermia to normal human skin in vivo upregulates heat shock proteins 27, 60, 72i and 90. J Cutan Pathol 27(4):176–182.  https://doi.org/10.1034/j.1600-0560.2000.027004176.x CrossRefPubMedGoogle Scholar
  54. Xu XG, Luo YJ, Wu Y, Chen JZ, Xu TH et al (2011) Immunohistological evaluation of skin responses after treatment using a fractional ultrapulse carbon dioxide laser on back skin. Dermatol Surg 37(8):1141–1149.  https://doi.org/10.1111/j.1524-4725.2011.02062.x CrossRefPubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2018

Authors and Affiliations

  • Richard Voellmy
    • 1
    • 2
  • Olivier Zürcher
    • 1
  • Manon Zürcher
    • 1
  • Pierre A. de Viragh
    • 3
  • Alexis K. Hall
    • 4
  • Stephen M. Roberts
    • 5
  1. 1.HSF Pharmaceuticals S.A.La Tour-de-PeilzSwitzerland
  2. 2.Department of Physiological SciencesUniversity of FloridaGainesvilleUSA
  3. 3.Department of Dermatology, InselspitalBern University Hospital, University of BernBernSwitzerland
  4. 4.Department of Physical TherapyUniversity of Florida College of Public Health and Health ProfessionsGainesvilleUSA
  5. 5.Center for Environmental and Human Toxicology, Department of Physiological SciencesUniversity of FloridaGainesvilleUSA

Personalised recommendations