Advertisement

Cell Stress and Chaperones

, Volume 23, Issue 4, pp 783–789 | Cite as

Leishmania mexicana differentiation involves a selective plasma membrane autophagic-like process

  • Francehuli Dagger
  • Camila Bengio
  • Angel Martinez
  • Carlos Ayesta
Short Communication

Abstract

Parasites of the Leishmania genus, which are the causative agents of leishmaniasis, display a complex life cycle, from a flagellated form (promastigotes) residing in the midgut of the phlebotomine vector to a non-flagellated form (amastigote) invading the mammalian host. The cellular process for the conversion between these forms is an interesting biological phenomenon involving modulation of the plasma membrane. In this study, we describe a selective autophagic-like process during the in vitro differentiation of Leishmania mexicana promastigote to amastigote-like cells. This process is responsible for size reduction and shape change of the promastigote (15–20 μm long) to the rounded amastigote-like form (4–5 μm long), identical to the one that infects host macrophages. This autophagic-like process is characterized by a profound folding of the plasma membrane and the presence of abundant cytoplasmic lipid droplets that may be the product of changes in the lipid metabolism. The key feature for the differentiation process at either pH 7.0 or pH 5.5 is the shift in temperature from 25 to 35 °C. Flagella shortening during the differentiation process appears as the product of continuous flagellar microtubular disassembly that is also accompanied by changes in mitochondrion localization. Drugs directed at blocking the parasite autophagic-like process could be important as new strategies to fight the disease.

Keywords

Leishmania Differentiation Plasma membrane Autophagy 

Notes

Acknowledgements

We are grateful to Ana Rascón for the critical reading of this manuscript. Our deep gratitude goes to Irene Dunia and Anne-Lise Haenni for the helpful discussions and critical revision of the final draft. We are indebted to Ilse Hurbain for the cell quantification assay. Finally, we thank the Centro de Microscopia Electrónica de la Facultad de Ciencias, UCV, Venezuela, for the electron microscope facilities.

References

  1. Barack E, Amin-Spector S, Gerliak E et al (2005) Differentiation of Leishmania donovani in host free system analysis of signal perception and response. Mol Biochem Parasitol 141(1):99–108.  https://doi.org/10.1016/j.molbiopara.2005.02.004 CrossRefGoogle Scholar
  2. Bemantes C, Souza-Silva F, Dos Santos K, Santini B et al (2017) Increasing in cysteine proteinase B expression and enzymatic activity during in vitro differentiation of Leishmania (Vianna) braziliensis. First evidence of modulation during morphological transition. Biochimie 133:28–36CrossRefGoogle Scholar
  3. Besteiro et al (2006) Endosome sorting and autophagy are essential for differentiation and virulence of Leishmania major. J Biol Chem 281(16):11384–11396.  https://doi.org/10.1074/jbc.M512307200 CrossRefPubMedGoogle Scholar
  4. Biegel D, Topper G, Rabinovitch N (1983) Leishmania mexicana: temperature sensitivity of isolates amastigotes and amastigotes infecting macrophages in culture. Exp Parasitol 56(3):289–297.  https://doi.org/10.1016/0014-4894(83)90074-7 CrossRefPubMedGoogle Scholar
  5. Brennand A, Gualdron-Lopez M, Coppens L, Ridgen DJ, Ginger ML, Michels PA (2011) Autophagy in parasitic protists: unique features and drug targets. Mol Biochem Parasitol 177(2):83–99.  https://doi.org/10.1016/j.molbiopara.2011.02.003 CrossRefPubMedGoogle Scholar
  6. Brennand A, Rico E, Michels PAM (2012) Autophagy in Trypanosomatids. Cell 1(4):346–371.  https://doi.org/10.3390/cells1030346 CrossRefGoogle Scholar
  7. Campos-Salinas J, Gonzalez-Rey E (2009) Autophagy and neuropeptides at the crossroad for parasites: to survive or to die? Autophagy 5(4):551–554.  https://doi.org/10.4161/auto.5.4.8365 CrossRefPubMedGoogle Scholar
  8. Cull B, Lima Prado J, Cola Fernandes J et al (2014) Glycosome turnover in Leishmania major is mediated by autophagy. Autophagy 10(12):2143–2157.  https://doi.org/10.4161/auto.36438 CrossRefPubMedGoogle Scholar
  9. Debrabant A, Joshi MB, Pimenta F, Dwyer D (2004) Generation of Leishmania donovani axenic amastigotes: their growth and biological characteristics. Int J of Parasitology 34: 205–217Google Scholar
  10. Duszenko M, Ginger ML, Brennand A, Lopez G, Colombo MI, Coombs GH et al (2011) Autophagy in protists. Autophagy 7(2):127–157.  https://doi.org/10.4161/auto.7.2.13310 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Eperon S, MacMahon-Pratt D (1989a) I. Extracellular cultivation and morphological characterization of amastigote like forms of Leishmania panamensis and Leishmania braziliensis. J Protozool 36(5):502–510.  https://doi.org/10.1111/j.1550-7408.1989.tb01086.x CrossRefPubMedGoogle Scholar
  12. Eperon S, MacMahon-Pratt D (1989b) II. Extracellular amastigote like forms of Leishmania panamensis and Leishmania braziliensis. II. Stage and species specific monoclonal antibodies. J Protozool 36(5):510–518.  https://doi.org/10.1111/j.1550-7408.1989.tb01087.x CrossRefPubMedGoogle Scholar
  13. Fong D, Chang KP (1982) Surface antigen changes during differentiation of parasitic protozoan Leishmania mexicana: identification by monoclonal antibodies. Proc Natl Acad Sci U S A 79(23):7366–7376.  https://doi.org/10.1073/pnas.79.23.7366 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Galvao-Quintao ASC, Ryter A, Rabinovitch M (1990) Intracellular differentiation of Leishmania amazonensis promastigotes to amastigotes : presence of megasomes, cysteine protease activity and susceptibility to leucine methyl ester. Parasitology 101(01):7–13.  https://doi.org/10.1017/S0031182000079683 CrossRefPubMedGoogle Scholar
  15. He C, Klionsky (2009) Regulation mechanism and signaling pathways of autophagy. Annu Rev Genet 43(1):67–93.  https://doi.org/10.1146/annurev-genet-102808-114910 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Herman M, Gillies S, Michels PA, Ridgen DJ (2006) Autophagy and related processes in trypanosomatids : insights from genome and bioinformatic analyses. Autophagy 2(2):107–118.  https://doi.org/10.4161/auto.2.2.2369 CrossRefPubMedGoogle Scholar
  17. Hernandez AG, Arguello C, Dagger F, Infante RB et al (1981) The surface membrane of Leishmania. In:Slutzky G (Ed) The biochemistry of parasites pp 47–65 Pergamon Press Oxford and New YorkGoogle Scholar
  18. Holzer TR, Mc Master WR, Forney JD (2006) Expression profile by whole genome interspecies microarrays hybridization reveals differential gene expression in procyclic promastigotes, lesion derived amatigotes and axenic amastigotes in Leishmania mexicana. Mol Biochem Parasitol 146(2):198–218.  https://doi.org/10.1016/j.molbiopara.2005.12.009 CrossRefPubMedGoogle Scholar
  19. Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137A–138BGoogle Scholar
  20. Malcolm J, Conville M, Nederer T (2011) Metabolic pathways required for the intracellular survival of Leishmania. Annu Rev Microbiol 6:543–561Google Scholar
  21. Marotta DE, Gerald N, Dwyer DM (2006) Rab5b localization to early endosomes in the protozoan human pathogen Leishmania donovani Mol. Cel. Biochemist 292:107–117Google Scholar
  22. Meijer WH, van der Klei IJ, Veenhuis M, Kiel JA (2007) ATG genes involves in non-selective autophagy are conserved from yeast to man, but the selective CyT and pexophagy pathways also requires organism specific genes. Autophagy 3(2):106–116.  https://doi.org/10.4161/auto.3595 CrossRefPubMedGoogle Scholar
  23. Monte Neto R, Souza M, Diaz CS et al (2011) Morphological and physiological changes in Leishmania promastigotes induced by yangambin, a lignan obtained from Ocotea duckei. Exp Parasitol 127(1):215–221.  https://doi.org/10.1016/j.exppara.2010.07.020 CrossRefPubMedGoogle Scholar
  24. Ramirez JL, Guevara P (1987) The ribosomal gene spacer as a tool for the taxonomy of Leishmania. Mol Biochem Parasitol 22(2-3):177–183.  https://doi.org/10.1016/0166-6851(87)90048-X CrossRefPubMedGoogle Scholar
  25. Stinson S, Sommer JR, Blum JJ (1989) Morphology of Leishmania braziliensis: changes during reversible heat-induced transformation from promastigotes to ellipsoidal forms. J Parasitol 75(3):431–440.  https://doi.org/10.2307/3282602 CrossRefPubMedGoogle Scholar
  26. Wheeler RJ, Gluenz E, Gull K (2011) The cell cycle of Leishmania: morphogenetics events and their implications for parasite biology. Mol Microbiol 79(3):647–662.  https://doi.org/10.1111/j.1365-2958.2010.07479.x CrossRefPubMedGoogle Scholar
  27. Williams RA, Woods K, Juliano L, Coombs GH (2009) Characterization of unusual families of ATYG8-like proteins and ATG-12 in the protozoan parasite Leishmania major. Autophagy 5(2):159–172.  https://doi.org/10.4161/auto.5.2.7328 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Yan Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335:1–32Google Scholar
  29. Yorimitzu T, Klionsky DJ (2005) Molecular machinery for self eating. Cell Death Differ 12:1542–1552.  https://doi.org/10.1038/sj.cdd.4401765 CrossRefGoogle Scholar
  30. Zakay HA et al (1998) In vitro stimulation of metacyclogenesis in Leishmania braziliensis, Leishmania donovani, Leishmania major and Leishmania mexicana. Parasitology 116(4):305–309.  https://doi.org/10.1017/S0031182097002382 CrossRefGoogle Scholar
  31. Zilverstein D, Shapira M (1994) The role of pH and temperature in the development of Leishmania parasites. Annu Rev Microbiol 48(1):449–470.  https://doi.org/10.1146/annurev.mi.48.100194.002313 CrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2017

Authors and Affiliations

  • Francehuli Dagger
    • 1
  • Camila Bengio
    • 1
  • Angel Martinez
    • 1
  • Carlos Ayesta
    • 2
  1. 1.Instituto de Biología Experimental, Facultad de CienciasUniversidad Central de VenezuelaCaracasVenezuela
  2. 2.Laboratorio de Fotografía, Facultad de CienciasUniversidad Central de VenezuelaCaracasVenezuela

Personalised recommendations