Advertisement

Cell Stress and Chaperones

, Volume 22, Issue 6, pp 767–774 | Cite as

Protective effects of Nebivolol against interleukin-1β (IL-1β)-induced type II collagen destruction mediated by matrix metalloproteinase-13 (MMP-13)

  • Zhigang Li
  • Baoyi Liu
  • Dewei ZhaoEmail author
  • BenJie Wang
  • Yupeng Liu
  • Yao Zhang
  • Fengde Tian
  • Borui Li
Original Paper

Abstract

The pathological progression of osteoarthritis (OA) involves degradation of articular cartilage matrix. Type II collagen is the main component of cartilage matrix, which is degraded by pro-inflammatory cytokines such as IL-1β mediated by MMP-13. Nebivolol, a licensed drug used for the treatment of hypertension in clinics, displays its anti-inflammatory capacity in various conditions. However, whether Nebivolol has a protective effect on cartilage matrix degradation has not been reported before. In this study, we investigated the effects of Nebivolol on regulating the expression of MMP-13 and degradation of type II collagen. Our results indicate that Nebivolol alleviated the increase in gene expression, protein expression, and activity of MMP-13 induced by IL-1β. Importantly, IL-1β strikingly reduced the levels of type II collagen in cell culture supernatants, which was reversed by treatment with Nebivolol in a dose-dependent manner. Mechanistically, Nebivolol was found to alleviate the increased levels of phosphorylated IκBα and reduced levels of total IκBα induced by IL-1β, which subsequently mitigated p65 nuclear translocation and the transcriptional activity of NF-κB. Furthermore, our results indicated that IL-1β treatment resulted in a significant increase in expression of the transcriptional factor interferon regulatory factor-1 (IRF-1) at both the mRNA and protein levels, which was significantly ameliorated by treatment with Nebivolol. The combination of these findings suggests that Nebivolol can potentially be applied in human OA treatment.

Keywords

Osteoarthritis (OA) Nebivolol Il-1β MMP-13 NF-κB Collagen 

References

  1. Ceron CS, Rizzi E, Guimarães DA, Martins-Oliveira A, Gerlach RF, Tanus-Santos JE (2013) Nebivolol attenuates prooxidant and profibrotic effects of nebivolol on endothelial gene expression during oxidative stress in human umbilical vein endothelial cells mechanisms involving TGF-β and MMPs, and decreases vascular remodeling in renovascular hypertension. Free Radic Biol Med 65:47–56. doi: 10.1016/j.freeradbiomed CrossRefPubMedGoogle Scholar
  2. Cheng DS, Visco CJ (2012) Pharmaceutical therapy for osteoarthritis. PM R 4:S82–S88Google Scholar
  3. Cominacini L, Fratta Pasini A, Garbin U, Nava C, Davoli A, Criscuoli M, Crea A, Sawamura T, Lo Cascio V (2003) Nebivolol and its 4-keto derivative increase nitric oxide in endothelial cells by reducing its oxidative inactivation. J Am Coll Cardiol 42(10):1838–1844CrossRefPubMedGoogle Scholar
  4. Dobre D, van Veldhuisen DJ, Mordenti G, Vintila M, Haaijer-Ruskamp FM et al (2007) Tolerability and dose-related effects of nebivolol in elderly patients with heart failure: data from the study of the effects of Nebivolol intervention on outcomes and Rehospitalisation in Seniors with Heart Failure (SENIORS) trial. Am Heart J 154:109–115CrossRefPubMedGoogle Scholar
  5. Dogan A, Karabacak M, Tayyar S, Erdogan D, Ozaydin M (2014) Comparison of the effects of carvedilol and nebivolol on diastolic functions of the left ventricle in patients with non-ischemic heart failure. Cardiol J 21(1):76–82CrossRefPubMedGoogle Scholar
  6. Francin J, Abot A, Guillaume C et al (2014) Association between adiponectin and cartilage degradation in human osteoarthritis. Osteoarthr Cartil 22:519–526CrossRefPubMedGoogle Scholar
  7. Gao Y, Nagao T, Bond RA, Janssens WJ, Vanhoutte PM (1991) Nebivolol induces endothelium-dependent relaxations of canine coronary arteries. J Cardiovasc Pharmacol 17:964–969CrossRefPubMedGoogle Scholar
  8. Garbin U, Fratta Pasini A, Stranieri C, Manfro S, Mozzini C, Boccioletti V, Pasini A, Cominacini M, Evangelista S, Cominacini L (2008) Effects of nebivolol on endothelial gene expression during oxidative stress in human umbilical vein endothelial cells. Mediat Inflamm 2008:567–590. doi: 10.1155/2008/367590 CrossRefGoogle Scholar
  9. Goldring MB (2000) Osteoarthritis and cartilage: the role of cytokines. Curr Rheumatol Rep 2:59–65CrossRefGoogle Scholar
  10. Goldring MB, Marcu KB (2009) Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther 11:224. doi: 10.1186/ar2592 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Heraud F, Heraud A, Harmand MF (2000) Apoptosis in normal and osteoarthritic human articular cartilage. Ann Rheum Dis 59:959–965CrossRefPubMedPubMedCentralGoogle Scholar
  12. Johnson AR, Pavlovsky AG, Ortwine DF, Prior F, Man CF, Bornemeier DA, Banotai CA, Mueller WT, McConnell P, Yan C, Baragi V, Lesch C, Roark WH, Wilson M, Datta K, Guzman R, Han HK, Dyer RD (2007) Discovery and characterization of a novel inhibitor of matrix metalloprotease-13 that reduces cartilage damage in vivo without joint fibroplasia side effects. J Biol Chem 282:27781–27791CrossRefPubMedGoogle Scholar
  13. Lee AH, Hong JH, Seo YS (2000) Tumour necrosis factor-a and interferon-c synergistically activate the RANTES promoter through nuclear factor κB and interferon regulatory factor 1 (IRF-1) transcription factors. Biochem J 350:131–138CrossRefPubMedPubMedCentralGoogle Scholar
  14. Liacini A, Sylvester J, Li WQ, Zafarullah M (2005) Mithramycin downregulates proinflammatory cytokine induced matrix metalloproteinase gene expression in articular chondrocytes. Arthritis Res Ther 7:R777–R783CrossRefPubMedPubMedCentralGoogle Scholar
  15. Liu MY, Khachigian LM (2009) Histone deacetylase-1 is enriched at the platelet-derived growth factor-D promoter in response to interleukin-1beta and forms a cytokine-inducible gene-silencing complex with NF-kappab p65 and interferon regulatory factor-1. J Biol Chem 284:35101–35112CrossRefPubMedPubMedCentralGoogle Scholar
  16. Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64:1697–1707CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lu H, Zeng C, Zhao H, Lian L, Dai Y (2014) Glatiramer acetate inhibits degradation of collagen II by suppressing the activity of interferon regulatory factor-1. Biochem Biophys Res Commun 448(3):323–328. doi: 10.1016/j.bbrc.2014.03.041 CrossRefPubMedGoogle Scholar
  18. Mengshol JA, Vincenti MP, Coon CI, Barchowsky A, Brinckerhoff CE (2000) Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor κB: differential regulation of collagenase 1 and collagenase 3. Arthritis Rheum 43:801–811CrossRefPubMedGoogle Scholar
  19. Mercanoglu GO, Pamukcu B, Safran N, Mercanoglu F, Fici F et al (2010) Nebivolol prevents remodeling in a rat myocardial infarction model: an echocardiographic study. Anadolu Kardiyol Derg 10:18–27CrossRefPubMedGoogle Scholar
  20. Ohmori Y, Schreiber RD, Hamilton TA (1997) Synergy between interferon-γ and tumor necrosis factor-α in transcriptional activation is mediated by cooperation between signal transducer and activator of transcription 1 and nuclear factor κB. J Bio Chem 1(272(23)):14899–14907CrossRefGoogle Scholar
  21. Patra D, Sandell LJ (2011) Evolving biomarkers in osteoarthritis. J Knee Surg 24:241–249CrossRefPubMedGoogle Scholar
  22. Sanchez C, Deberg MA, Piccardi N, Msika P, Reginster JY, Henrotin YE (2005a) Osteoblasts from the sclerotic subchondral bone downregulate aggrecan but upregulate metalloproteinases expression by chondrocytes. This effect is mimicked by interleukin-6, −1beta and oncostatin M pre-treated nonsclerotic osteoblasts. Osteoarthr Cartil 13:979–987CrossRefPubMedGoogle Scholar
  23. Sanchez C, Deberg MA, Piccardi N, Msika P, Reginster JY, Henrotin YE (2005b) Osteoblasts from the sclerotic subchondral bone downregulate aggrecan but upregulate metalloproteinases expression by chondrocytes. This effect is mimicked by interleukin-6, −1beta and oncostatin pre-treated non-sclerotic osteoblasts. Osteoarthr Cartil 13:979–987CrossRefPubMedGoogle Scholar
  24. Senolt L, Grigorian M, Lukanidin E, Simmen B, Michel BA, Pavelka K, Gay RE, Gay S, Neidhart M (2006) S100A4 is expressed at site of invasion in rheumatoid arthritis synovium and modulates production of matrix metalloproteinases. Ann Rheum Dis 65:1645–1648CrossRefPubMedPubMedCentralGoogle Scholar
  25. Shultz DB, Rani MR, Fuller JD et al (2009) Roles of IKK-β, IRF1, and p65 in the activation of chemokine genes by interferon-γ. J Interf Cytokine Res 29:817–824CrossRefGoogle Scholar
  26. Takaishi H, Kimura T, Dalal S, Okada Y, D’Armiento J (2008) Joint diseases and matrix metalloproteinases: a role for MMP-13. Curr Pharm Biotechnol 9:47–54CrossRefPubMedGoogle Scholar
  27. Tsoporis J, Rizos IK, Toumpoulis IK, Salpeas V, Izhar S (2014) Parker TG (2014) Nebivolol suppresses hypoxic-induced rat thoracic aortic smooth muscle cell apoptosis by a mechanism involving nitric oxide production, HSP70 upregulation and inhibition of P53 phosphorylation. Arterioscler Thromb Vasc Biol 34:A119Google Scholar
  28. Vignon E, Arlot M, Meunier P, Vignon G (2000) Quantitative histological changes in osteoarthritic hip cartilage. Morphometric analysis of osteoarthritic and 26 normal human femoral heads. Clin Orthop Relat Res 103(1974):269–278Google Scholar
  29. Wen D, Nong Y, Morgan JG, Gangurde P, Bielecki A, Dasilva J, Keaveney M, Cheng H, Fraser C, Schopf L, Hepperle M, Harriman G, Jaffee BD, Ocain TD, Xu Y (2006) A selective small molecule IκB kinase β inhibitor blocks nuclear factor κB-mediated inflammatory responses in human fibroblast-like synoviocytes, chondrocytes and mast cells. J Pharmacol Exp Ther 317:989–1001CrossRefPubMedGoogle Scholar
  30. Wu W, Billinghurst RC, Pidoux I, Antoniou J, Zukor D, Tanzer M, Poole AR (2002) Sites of collagenase cleavage and denaturation of of type II collagen in articular cartilage in ageing and osteoarthritis and their relationship to the distribution of the collagenases MMP-1 and MMP-13. Arthritis Rheum 46:2087–2094CrossRefPubMedGoogle Scholar
  31. Xie Q, Wei T, Huang C, Liu P, Sun M, Shen W, Gao P (2016) Nebivolol ameliorates cardiac NLRP3 inflammasome activation in a juvenile-adolescent animal model of diet-induced obesity. Sci Rep 6:34326CrossRefPubMedPubMedCentralGoogle Scholar
  32. Yasuhara R, Miyamoto Y, Akaike T, Akuta T, Nakamura M, Takami M, Morimura N, Yasu K, Kamijo R (2005) Interleukin-1b induces death in chondrocyte-like ATDC5 cells through mitochondrial dysfunction and energy depletion in a reactive nitrogen and oxygen species dependent manner. Biochem J 389:315–323CrossRefPubMedPubMedCentralGoogle Scholar
  33. Zhou PH, Liu SQ, Peng H (2008) The effect of hyaluronic acid on IL-1β-induced chondrocyte apoptosis in a rat model of osteoarthritis. J Orthop research 26:1643–1648CrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2017

Authors and Affiliations

  • Zhigang Li
    • 1
    • 2
  • Baoyi Liu
    • 2
  • Dewei Zhao
    • 2
    Email author
  • BenJie Wang
    • 2
  • Yupeng Liu
    • 2
  • Yao Zhang
    • 2
  • Fengde Tian
    • 2
  • Borui Li
    • 2
  1. 1.Department of Biomedical Engineering, Faculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianPeople’s Republic of China
  2. 2.Department of OrthopaedicsAffiliated Zhongshan Hospital of Dalian UniversityDalianPeople’s Republic of China

Personalised recommendations