Advertisement

Cell Stress and Chaperones

, Volume 21, Issue 5, pp 883–894 | Cite as

Regulation of gene expression by NFAT transcription factors in hibernating ground squirrels is dependent on the cellular environment

  • Yichi Zhang
  • Kenneth B. StoreyEmail author
Original Paper

Abstract

Calcineurin is a calmodulin-stimulated phosphatase that regulates the nuclear translocation of nuclear factor of activated T cell (NFAT) c1-4 through dephosphorylation. We believe that this mechanism plays various roles in the remodeling and maintenance of Ictidomys tridecemlineatus skeletal muscle. During hibernation, bouts of torpor and arousal take place, and squirrels do not lose muscle mass despite being inactive. Protein expression of Ca2+ signaling proteins were studied using immunoblotting. A DNA-protein interaction ELISA technique was created to test the binding of NFATs in the nucleus to DNA probes containing the NFAT response element under environmental conditions reflective of those during hibernation. Calcineurin protein levels increased by 3.08-fold during torpor (compared to euthermic control), whereas calpain1 levels also rose by 3.66-fold during torpor. Calmodulin levels were elevated upon entering torpor. NFATc4 binding to DNA showed a 1.4-fold increase during torpor, and we found that this binding was further enhanced when 600 nM of Ca2+ was supplemented. We also found that decreasing the temperature of ELISAs resulted in progressive decreases in the binding of NFATs c1, c3, and c4 to DNA. In summary, calmodulin and calpain1 appear to activate calcineurin and NFATc4 during torpor. NFAT binding to target promoters is affected by intranuclear [Ca2+] and environmental temperatures. Therefore, Ca2+ signaling and temperature changes play key roles in regulation of the NFAT-calcineurin pathway in skeletal muscle of hibernating 13-lined ground squirrels over the torpor-arousal cycle, and they may contribute to the avoidance of disuse-induced muscle atrophy that occurs naturally in these animals.

Keywords

Nuclear factor of activated T cells Calcium signaling Hibernation Ictidomys tridecemlineatus Immunoblot DPI-ELISA 

Notes

Acknowledgments

We thank Dr. J.M. Hallenbeck and Dr. D.C. McMullen (NINDS, NIH, Bethesda) for providing the tissue samples for this study. This work was supported by a discovery grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada (# 6793) to Kenneth B. Storey. Kenneth B. Storey holds the Canada Research Chair in Molecular Physiology; Yichi Zhang held a postgraduate Queen Elizabeth II Graduate Scholarship in Science and Technology.

Supplementary material

12192_2016_713_MOESM1_ESM.docx (13 kb)
ESM 1 (DOCX 12 kb)

Reference

  1. Armand AS, Bourajjaj M, Martínez-Martínez S, el Azzouzi H, da Costa Martins PA, Hatzis P, Seidler T, Redondo JM, De Windt LJ (2008) Cooperative synergy between NFAT and MyoD regulates myogenin expression and myogenesis. J Biol Chem 283:29004–29010. doi: 10.1074/jbc.M801297200 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bassel-Duby R, Olson EN (2006) Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 75:19–37. doi: 10.1146/annurev.biochem.75.103004.142622 CrossRefPubMedGoogle Scholar
  3. Brand LH, Kirchler T, Hummel S, Chaban C, Wanke D (2010) DPI-ELISA: a fast and versatile method to specify the binding of plant transcription factors to DNA in vitro. Plant Methods 6:25. doi: 10.1186/1746-4811-6-25 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brand LH, Henneges C, Schüssler A, Kolukisaoglu HÜ, Koch G, Wallmeroth N, Hecker A, Thurow K, Zell A, Harter K, Wanke D (2013) Screening for protein-DNA interactions by automatable DNA-protein interaction ELISA. PLoS One 8:e75177. doi: 10.1371/journal.pone.0075177 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brière C, Xiong TC, Mazars C, Ranjeva R (2006) Autonomous regulation of free Ca2+ concentrations in isolated plant cell nuclei: a mathematical analysis. Cell Calcium 39:293–303. doi: 10.1016/j.ceca.2005.11.005 CrossRefPubMedGoogle Scholar
  6. Buck CL, Barnes BM (2000) Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator. Am J Physiol Regul Integr Comp Physiol 279:R255–R262PubMedGoogle Scholar
  7. Burkard N (2005) Targeted proteolysis sustains calcineurin activation. Circulation 111:1045–1053. doi: 10.1161/01.CIR.0000156458.80515.F7 CrossRefPubMedGoogle Scholar
  8. Chawla S, Hardingham GE, Quinn DR, Bading H (1998) CBP: a signal-regulated transcriptional coactivator controlled by nuclear calcium and CaM kinase IV. Science 281:1505–1509. doi: 10.1126/science.281.5382.1505 CrossRefPubMedGoogle Scholar
  9. Chen J, Nolte V, Schlötterer C (2015) Temperature related reaction norms of gene expression: regulatory architecture and functional implications. Mol Biol Evol 32(9):2393–2402. doi: 10.1093/molbev/msv120 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chilian WM, Tollefson D (1976) Blood urea levels and erythrocyte fragility to isosmotic urea during hibernation and activity of Spermophilus tridecimlineatus. Comp Biochem Physiol A Physiol 54:433–435. doi: 10.1016/0300-9629(76)90045-1 CrossRefGoogle Scholar
  11. Choi H, Selpides PJI, Nowell MM, Rourke BC (2009) Functional overload in ground squirrel plantaris muscle fails to induce myosin isoform shifts. Am J Physiol Regul Integr Comp Physiol 297:R578–R586. doi: 10.1152/ajpregu.00236.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cotton CJ, Harlow HJ (2015) Avoidance of skeletal muscle atrophy in spontaneous and facultative hibernators. Physiol Biochem Zool 83:551–560. doi: 10.1086/650471 CrossRefGoogle Scholar
  13. Delling U, Tureckova J, Lim HAEW, Windt LJDE, Rotwein P, Molkentin JD (2000) A calcineurin-NFATc3-dependent pathway regulates skeletal muscle differentiation and slow myosin heavy-chain expression. Mol Cell Biol 20:6600–6611CrossRefPubMedPubMedCentralGoogle Scholar
  14. Demonbreun AR, Lapidos KA, Heretis K, Levin S, Dale R, Pytel P, Svensson EC, McNally EM (2010) Myoferlin regulation by NFAT in muscle injury, regeneration and repair. J Cell Sci 123:2413–2422. doi: 10.1242/jcs.065375 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dobi A, Agoston DV (1998) Submillimolar levels of calcium regulates DNA structure at the dinucleotide repeat (TG/AC)n. Proc Natl Acad Sci U S A 95:5981–5986. doi: 10.1073/pnas.95.11.5981 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Eaton SL, Roche SL, Llavero Hurtado M, Oldknow KJ, Farquharson C, Gillingwater TH, Wishart TM (2013) Total protein analysis as a reliable loading control for quantitative fluorescent Western blotting. PLoS One 8:e72457. doi: 10.1371/journal.pone.0072457 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Epperson LE, Karimpour-Fard A, Hunter LE, Martin SL (2011) Technology development for physiological genomics metabolic cycles in a circannual hibernator. Physiol Genomics 80045:799–807. doi: 10.1152/physiolgenomics.00028.2011 CrossRefGoogle Scholar
  18. Frerichs KU, Hallenbeck JM (1998) Hibernation in ground squirrels induces state and species-specific tolerance to hypoxia and aglycemia: an in vitro study in hippocampal slices. J Cereb Blood Flow Metab 18:168–175. doi: 10.1097/00004647-199802000-00007 CrossRefPubMedGoogle Scholar
  19. Gao YF, Wang J, Wang HP, Feng B, Dang K, Wang Q, Hinghofer-Szalkay HG (2012) Skeletal muscle is protected from disuse in hibernating dauria ground squirrels. Comp Biochem Physiol A Mol Integr Physiol 161:296–300. doi: 10.1016/j.cbpa.2011.11.009 CrossRefPubMedGoogle Scholar
  20. Gerace L, Burke B (1988) Functional organization of the nuclear envelope. Annu Rev Cell Biol 4:335–374CrossRefPubMedGoogle Scholar
  21. Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38:695–699. doi: 10.1093/nar/gkq313 CrossRefGoogle Scholar
  22. Hayashida N, Fujimoto M, Tan K, Prakasam R, Shinkawa T, Li L, Ichikawa H, Takii R, Nakai A (2010) Heat shock factor 1 ameliorates proteotoxicity in cooperation with the transcription factor NFAT. EMBO J 29:3459–3469. doi: 10.1038/emboj.2010.225 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hudson MB, Woodworth-Hobbs ME, Zheng B, Rahnert JA, Blount MA, Gooch JL, Searles CD, Price SR (2014) miR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export. Am J Physiol Cell Physiol 306:C551–558. doi: 10.1152/ajpcell.00266.2013 CrossRefPubMedGoogle Scholar
  24. Hung HF, Wang BW, Chang H, Shyu KG (2008) The molecular regulation of resistin expression in cultured vascular smooth muscle cells under hypoxia. J Hypertens 26:2349–2360. doi: 10.1097/HJH.0b013e328311fa30 CrossRefPubMedGoogle Scholar
  25. Jagelská E, Brázda V, Pospisilová S, Vojtesek B, Palecek E (2002) New ELISA technique for analysis of p53 protein/DNA binding properties. J Immunol Methods 267:227–235. doi: 10.1016/S0022-1759(02)00182-5 CrossRefPubMedGoogle Scholar
  26. Kalivendi SV, Konorev EA, Cunningham S, Vanamala SK, Kaji EH, Joseph J, Kalyanaraman B (2005) Doxorubicin activates nuclear factor of activated T-lymphocytes and Fas ligand transcription: role of mitochondrial reactive oxygen species and calcium. Biochem J 389:527–539. doi: 10.1042/BJ20050285 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Klee CB, Crouch TH, Krinks MH (1979) Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc Natl Acad Sci 76:6270–6273. doi: 10.1073/pnas.76.12.6270 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kretsinger R (1987) Calcium coordination and the calmodulin fold: divergent versus convergent evolution. Cold Spring Harb Symp Quant Biol 52:499–510CrossRefPubMedGoogle Scholar
  29. Kristofferson R (1963) Urea-levels in blood and tissues of hibernating and non-hibernating hedgehogs. Nature 197:402–403CrossRefGoogle Scholar
  30. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi: 10.1093/bioinformatics/btm404 CrossRefPubMedGoogle Scholar
  31. Lee TN, Buck CL, Barnes BM, O’Brien DM (2012) A test of alternative models for increased tissue nitrogen isotope ratios during fasting in hibernating arctic ground squirrels. J Exp Biol 215:3354–3361. doi: 10.1242/jeb.068528 CrossRefPubMedGoogle Scholar
  32. Lee SH, Choi J, Kim H, Lee DH, Roh GS, Kim HJ, Kang SS, Choi WS, Cho GJ (2014) FK506 reduces calpain-regulated calcineurin activity in both the cytoplasm and the nucleus. Anat Cell Biol 47:91–100. doi: 10.5115/acb.2014.47.2.91 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liu B, Wohlfart B, Johansson BW (1990) Effects of low temperature on contraction in papillary muscles from rabbit, rat, and hedgehog. Cryobiology 27:539–546. doi: 10.1016/0011-2240(90)90041-2 CrossRefPubMedGoogle Scholar
  34. Liu B, Wang LC, Belke DD (1991) Effect of low temperature on the cytosolic free Ca2+ in rat ventricular myocytes. Cell Calcium 12:11–18CrossRefPubMedGoogle Scholar
  35. Liu B, Wang LCH, Belke DD (1993) Effects of temperature and pH on cardiac myofilament Ca-2+ sensitivity in rat and ground squirrel. Am J Physiol 264:R104–R108PubMedGoogle Scholar
  36. Luan S (2011) Coding and decoding of calcium signals in plants. Springer:41–61. doi: 10.1007/978-3-642-20829-4Google Scholar
  37. Malatesta M, Perdoni F, Battistelli S, Muller S, Zancanaro C (2009) The cell nuclei of skeletal muscle cells are transcriptionally active in hibernating edible dormice. BMC Cell Biol 10:19. doi: 10.1186/1471-2121-10-19 CrossRefPubMedPubMedCentralGoogle Scholar
  38. McArthur MD, Milsom WK (1991) Changes in ventilation and respiratory sensitivity associated with hibernation in Columbian (Spermophilus columbianus) and golden-mantled (Spermophilus lateralis) ground squirrels. Physiol Zool 64:940–959CrossRefGoogle Scholar
  39. McMullen DC, Hallenbeck JM (2010) Regulation of Akt during torpor in the hibernating ground squirrel, Ictidomys tridecemlineatus. J Comp Physiol B Biochem Syst Environ Physiol 180:927–934. doi: 10.1007/s00360-010-0468-8 CrossRefGoogle Scholar
  40. McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, Cowley AP, Lopez R (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41:597–600. doi: 10.1093/nar/gkt376 CrossRefGoogle Scholar
  41. Novák A, Boldizsár Á, Ádám É, Kozma-Bognár L, Majláth I, Båga M, Tóth B, Chibbar R, Galiba G (2015) Light-quality and temperature-dependent CBF14 gene expression modulates freezing tolerance in cereals. J Exp Bot:1102–1105Google Scholar
  42. Pusl T, Wu JJ, Zimmerman TL, Zhang L, Ehrlich BE, Berchtold MW, Hoek JB, Karpen SJ, Nathanson MH, Bennett AM (2002) Epidermal growth factor-mediated activation of the ETS domain transcription factor Elk-1 requires nuclear calcium. J Biol Chem 277:27517–27527. doi: 10.1074/jbc.M203002200 CrossRefPubMedGoogle Scholar
  43. Rao A, Luo C, Hogan PG (1997) Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15:707–747. doi: 10.1146/annurev.immunol.15.1.707 CrossRefPubMedGoogle Scholar
  44. Riehle MM, Bennett AF, Lenski RE, Long AD (2003) Evolutionary changes in heat-inducible gene expression in lines of Escherichia coli adapted to high temperature. Physiol Genomics 14:47–58. doi: 10.1152/physiolgenomics.00034.2002 CrossRefPubMedGoogle Scholar
  45. Rourke BC, Yokoyama Y, Milsom WK, Caiozzo VJ (2004) Myosin isoform expression and MAFbx mRNA levels in hibernating golden- mantled ground squirrels (Spermophilus lateralis). Physiol Biochem 77:582–593Google Scholar
  46. Rusnak F, Mertz P (2000) Calcineurin: form and function. Physiol Rev 80:1483–1521. doi: 10.1172/JCI57909.date PubMedGoogle Scholar
  47. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412. doi: 10.1016/S0092-8674(04)00400-3 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sato M, Nakakura T, Ogushi Y, Akabane G, Kurabuchi S, Suzuki M, Tanaka S (2011) Expression of a mammalian aquaporin 3 homolog in the anterior pituitary gonadotrophs of the tree frog, Hyla japonica. Cell Tissue Res 343:595–603. doi: 10.1007/s00441-010-1122-1 CrossRefPubMedGoogle Scholar
  49. Schiaffino S, Sandri M, Murgia M (2007) Activity-dependent signaling pathways controlling muscle diversity and plasticity. Physiology (Bethesda) 22:269–278. doi: 10.1152/physiol.00009.2007 CrossRefGoogle Scholar
  50. Shioda N, Moriguchi S, Shirasaki Y, Fukunaga K (2006) Generation of constitutively active calcineurin by calpain contributes to delayed neuronal death following mouse brain ischemia. J Neurochem 98:310–320. doi: 10.1111/j.1471-4159.2006.03874.x CrossRefPubMedGoogle Scholar
  51. Srivastava AK, Penna S, Van Nguyen D, Tran LSP (2014) Multifaceted roles of aquaporins as molecular conduits in plant responses to abiotic stresses. Crit Rev Biotechnol 8551:1–10. doi: 10.3109/07388551.2014.973367 CrossRefGoogle Scholar
  52. Stenvinkel P, Fröbert O, Anderstam B, Palm F, Eriksson M, Bragfors-Helin AC, Qureshi AR, Larsson T, Friebe A, Zedrosser A, Josefsson J, Svensson M, Sahdo B, Bankir L, Johnson RJ (2013) Metabolic changes in summer active and anuric hibernating free-ranging brown bears (Ursus arctos). PLoS One 8:e72934. doi: 10.1371/journal.pone.0072934 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Storey KB (2010) Out cold: biochemical regulation of mammalian hibernation—a mini-review. Gerontology 56:220–230. doi: 10.1159/000228829 CrossRefPubMedGoogle Scholar
  54. Storey KB, Storey JM (2004) Metabolic rate depression in animals: transcriptional and translational controls. Biol Rev Camb Philos Soc 79:207–233. doi: 10.1017/S1464793103006195 CrossRefPubMedGoogle Scholar
  55. Swindell WR, Huebner M, Weber AP (2007) Plastic and adaptive gene expression patterns associated with temperature stress in Arabidopsis thaliana. Heredity 99:143–50. doi: 10.1038/sj.hdy.6800975 CrossRefPubMedGoogle Scholar
  56. Tessier SN, Storey KB (2016) Lessons from mammalian hibernators: molecular insights into striated muscle plasticity and remodeling. Biomol Concepts 7(2):69–92. doi: 10.1515/bmc-2015-0031 CrossRefPubMedGoogle Scholar
  57. Thompson M, Andrade VA, Andrade SJ, Pusl T, Ortega JM, Goes AM, Leite MF (2003) Inhibition of the TEF/TEAD transcription factor activity by nuclear calcium and distinct kinase pathways. Biochem Biophys Res Commun 301:267–274. doi: 10.1016/S0006-291X(02)03024-3 CrossRefPubMedGoogle Scholar
  58. Wang LCH, Lee TF (1996) Torpor and hibernation in mammals: metabolic, physiological, and biochemical adaptations. In: Fregley MJ, Blatteis CM (eds) Handbook of physiology: environmental physiology, section 4, vol 1. Oxford University Press, New York, pp 507–532Google Scholar
  59. Wang SQ, Zhou ZQ (1999) Alpha-stat calibration of indo-1 fluorescence and measurement of intracellular free calcium in rat ventricular cells at different temperatures. Life Sci 65:871–877CrossRefPubMedGoogle Scholar
  60. Wang SQ, Huang YH, Liu KS, Zhou ZQ (1997) Dependence of myocardial hypothermia tolerance on sources of activator calcium. Cryobiology 35:193–200. doi: 10.1006/cryo.1997.2040 CrossRefPubMedGoogle Scholar
  61. Wang S, Zhou Z, Qian H (1999) Temperature dependence of intracellular free calcium in cardiac myocytes from rat and ground squirrel measured by confocal microscopy. Sci China C Life Sci 42:293–299. doi: 10.1007/BF03183606 CrossRefPubMedGoogle Scholar
  62. Wang S, Zhou Z, Qian H (2000) Recording of calcium transient and analysis of calcium removal mechanisms in cardiac myocytes from rats and ground squirrels. Sci China C Life Sci 43:191–199. doi: 10.1007/BF02879128 CrossRefPubMedGoogle Scholar
  63. Wang SQ, Lakatta EG, Cheng H, Zhou ZQ (2002) Adaptive mechanisms of intracellular calcium homeostasis in mammalian hibernators. J Exp Biol 205:2957–2962PubMedGoogle Scholar
  64. Wu CW, Storey KB (2014) FoxO3a-mediated activation of stress responsive genes during early torpor in a mammalian hibernator. Mol Cell Biochem 390:185–195. doi: 10.1007/s11010-014-1969-7 CrossRefPubMedGoogle Scholar
  65. Xiong X, Tao R, DePinho RA, Dong XC (2012) The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism. J Biol Chem 287:39107–39114. doi: 10.1074/jbc.M112.412569 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Xu R, Andres-Mateos E, Mejias R, MacDonald EM, Leinwand LA, Merriman DK, Fink RHA, Cohn RD (2013) Hibernating squirrel muscle activates the endurance exercise pathway despite prolonged immobilization. Exp Neurol 247:392–401. doi: 10.1016/j.expneurol.2013.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Yancey PH, Burg MB (1990) Counteracting effects of urea and betaine in mammalian cells in culture. Am J Physiol 258:R198–204PubMedGoogle Scholar
  68. Yang S, Klee CB (2000) Low affinity Ca2+-binding sites of calcineurin B mediate conformational changes in calcineurin A. Biochemistry 39:16147–16154CrossRefPubMedGoogle Scholar
  69. Yang T, Davis RJ, Chow CW (2001) Requirement of two NFATc4 transactivation domains for CBP potentiation. J Biol Chem 276:39569–39576. doi: 10.1074/jbc.M102961200 CrossRefPubMedGoogle Scholar
  70. Zhang Y, Storey KB (2015) Expression of nuclear factor of activated T cells (NFAT) and downstream muscle-specific proteins in ground squirrel skeletal and heart muscle during hibernation. Mol Cell Biochem 412:27–40. doi: 10.1007/s11010-015-2605-x CrossRefPubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2016

Authors and Affiliations

  1. 1.Institute of Biochemistry and Department of BiologyCarleton UniversityOttawaCanada

Personalised recommendations