Cell Stress and Chaperones

, Volume 21, Issue 5, pp 745–753 | Cite as

The central role of heat shock factor 1 in synaptic fidelity and memory consolidation

  • Philip L. HooperEmail author
  • Heather D. Durham
  • Zsolt Török
  • Paul L. Hooper
  • Tim Crul
  • László Vígh
Perspective and Reflection Article


Networks of neuronal synapses are the fundamental basis for making and retaining memory. Reduced synapse number and quality correlates with loss of memory in dementia. Heat shock factor 1 (HSF1), the major transcription factor regulating expression of heat shock genes, plays a central role in proteostasis, in establishing and sustaining synaptic fidelity and function, and in memory consolidation. Support for this thesis is based on these observations: (1) heat shock induces improvements in synapse integrity and memory consolidation; (2) synaptic depolarization activates HSF1; (3) activation of HSF1 alone (independent of the canonical heat shock response) augments formation of essential synaptic elements—neuroligands, vesicle transport, synaptic scaffolding proteins, lipid rafts, synaptic spines, and axodendritic synapses; (4) HSF1 coalesces and activates memory receptors in the post-synaptic dendritic spine; (5) huntingtin or α-synuclein accumulation lowers HSF1 while HSF1 lowers huntingtin and α-synuclein aggregation—a potential vicious cycle; and (6) HSF1 agonists (including physical activity) can improve cognitive function in dementia models. Thus, via direct gene expression of synaptic elements, production of HSPs that assure high protein fidelity, and activation of other neuroprotective signaling pathways, HSF1 agonists could provide breakthrough therapy for dementia-associated disease.


HSF1 Heat shock factor 1 Memory Synapse, heat shock Heat shock proteins Synapse Synapsin, PSD95 Synaptophysin SAP97 Celastrol B12 Exercise Hyperthermia Fear Emotion Stress Dementia Alzheimer’s Neurodegenerative disease TRP Ethanol Resveratrol SIRT1 GSK3 Curcumin Xenohormetic Insulin Diabetes Calcium Glutamate NMDAR AMPAR HSP90 inhibitor Consolidation Fidelity Neuron survival Drug discovery Therapy Cognitive function Scaffolding proteins Lipid rafts Synaptic spines Integrin Hippocampus Amyloid BDNF Huntingtin α-Synuclein Parkinson’s Aggregation Herbs GGA CaMKII Calcium channel 



Tim Crul was funded by OTKA PD109539 and Laszlo Vigh and Zsolt Torok by OTKA NK100857 and OTKA NN111006.


  1. Anstey KJ, Mack HA, Cherbuin N (2009) Alcohol consumption as a risk factor for dementia and cognitive decline: meta-analysis of prospective studies. Am J Geriatr Psychiatry 17:542–555. doi: 10.1097/JGP.0b013e3181a2fd07 CrossRefPubMedGoogle Scholar
  2. Aslanyan G, Amroyan E, Gabrielyan E et al (2010) Double-blind, placebo-controlled, randomised study of single dose effects of ADAPT-232 on cognitive functions. Phytomedicine 17:494–499. doi: 10.1016/j.phymed.2010.02.005 CrossRefPubMedGoogle Scholar
  3. Bailey CH, Kandel ER, Harris KM (2015) Structural components of synaptic plasticity and memory consolidation. Cold Spring Harb Perspect Biol. doi: 10.1101/cshperspect.a021758 PubMedGoogle Scholar
  4. Balogh G, Péter M, Liebisch G et al (2010) Lipidomics reveals membrane lipid remodelling and release of potential lipid mediators during early stress responses in a murine melanoma cell line. Biochim Biophys Acta 1801:1036–1047. doi: 10.1016/j.bbalip.2010.04.011 CrossRefPubMedGoogle Scholar
  5. Balogh G, Maulucci G, Gombos I et al (2011) Heat stress causes spatially-distinct membrane re-modelling in K562 leukemia cells. PLoS One 6:e21182. doi: 10.1371/journal.pone.0021182 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Belmadani A, Kumar S, Schipma M et al (2004) Inhibition of amyloid-beta-induced neurotoxicity and apoptosis by moderate ethanol preconditioning. Neurol Rep 15:2093–2096Google Scholar
  7. Bijur GN, Jope RS (2000) Opposing actions of phosphatidylinositol 3-kinase and glycogen synthase kinase-3beta in the regulation of HSF-1 activity. J Neurochem 75:2401–2408CrossRefPubMedGoogle Scholar
  8. Blaicher W, Gruber D, Bieglmayer C et al (1999) The role of oxytocin in relation to female sexual arousal. Gynecol Obstet Investig 47:125–126CrossRefGoogle Scholar
  9. Bromberg Z, Goloubinoff P, Saidi Y, Weiss YG (2013) The membrane-associated transient receptor potential vanilloid channel is the central heat shock receptor controlling the cellular heat shock response in epithelial cells. PLoS One 8:e57149. doi: 10.1371/journal.pone.0057149 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bykhovskaia M (2011) Synapsin regulation of vesicle organization and functional pools. Semin Cell Dev Biol 22:387–392. doi: 10.1016/j.semcdb.2011.07.003 CrossRefPubMedGoogle Scholar
  11. Chen Y, Wang B, Liu D et al (2014) Hsp90 chaperone inhibitor 17-AAG attenuates Aβ-induced synaptic toxicity and memory impairment. J Neurosci 34:2464–2470. doi: 10.1523/JNEUROSCI.0151-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chow AM, Tang DWF, Hanif A, Brown IR (2014) Localization of heat shock proteins in cerebral cortical cultures following induction by celastrol. Cell Stress Chaperones 19:845–851. doi: 10.1007/s12192-014-0508-5 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Christianson JP, Ragole T, Amat J et al (2010) 5-Hydroxytryptamine 2C receptors in the basolateral amygdala are involved in the expression of anxiety after uncontrollable traumatic stress. Biol Psychiatry 67:339–345. doi: 10.1016/j.biopsych.2009.09.011 CrossRefPubMedGoogle Scholar
  14. Cohen-Cory S (2002) The developing synapse: construction and modulation of synaptic structures and circuits. Science 298:770–776. doi: 10.1126/science.1075510 CrossRefPubMedGoogle Scholar
  15. Collins MA, Neafsey EJ, Wang K et al (2010) Moderate ethanol preconditioning of rat brain cultures engenders neuroprotection against dementia-inducing neuroinflammatory proteins: possible signaling mechanisms. Mol Neurobiol 41:420–425. doi: 10.1007/s12035-010-8138-0 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cooper C, Sommerlad A, Lyketsos CG, Livingston G (2015) Modifiable predictors of dementia in mild cognitive impairment: a systematic review and meta-analysis. Am J Psychiatry 172:323–334. doi: 10.1176/appi.ajp.2014.14070878 CrossRefPubMedGoogle Scholar
  17. Craft S, Baker LD, Montine TJ et al (2012) Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69:29–38. doi: 10.1001/archneurol.2011.233 CrossRefPubMedGoogle Scholar
  18. Crul T, Toth N, Piotto S et al (2013) Hydroximic acid derivatives: pleiotropic HSP co-inducers restoring homeostasis and robustness. Curr Pharm Des 19:309–346CrossRefPubMedGoogle Scholar
  19. Csoboz B, Balogh GE, Kusz E et al (2013) Membrane fluidity matters: hyperthermia from the aspects of lipids and membranes. Int J Hyperth 29:491–499. doi: 10.3109/02656736.2013.808765 CrossRefGoogle Scholar
  20. Das S, Bhattacharyya NP (2015) Heat shock factor 1-regulated miRNAs can target huntingtin and suppress aggregates of mutant huntingtin. MicroRNA (Shāriqah, United Arab Emirates) 4:185–193Google Scholar
  21. Das S, Bhattacharyya NP (2016) Huntingtin interacting protein HYPK is a negative regulator of heat shock response and is downregulated in models of Huntington’s disease. Exp Cell Res 343:107–117. doi: 10.1016/j.yexcr.2016.03.021 CrossRefPubMedGoogle Scholar
  22. Evans JC, Robinson CM, Shi M, Webb DJ (2015) The guanine nucleotide exchange factor (GEF) Asef2 promotes dendritic spine formation via Rac activation and spinophilin-dependent targeting. J Biol Chem 290:10295–10308. doi: 10.1074/jbc.M114.605543 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ghemrawi R, Pooya S, Lorentz S et al (2013) Decreased vitamin B12 availability induces ER stress through impaired SIRT1-deacetylation of HSF1. Cell Death Dis 4:e553. doi: 10.1038/cddis.2013.69 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gombos I, Crul T, Piotto S et al (2011) Membrane-lipid therapy in operation: the HSP co-inducer BGP-15 activates stress signal transduction pathways by remodeling plasma membrane rafts. PLoS One 6:e28818. doi: 10.1371/journal.pone.0028818 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gong Y, Lippa CF (2010) Review: disruption of the postsynaptic density in Alzheimer’s disease and other neurodegenerative dementias. Am J Alzheimers Dis Other Demen 25:547–555. doi: 10.1177/1533317510382893 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Grotewiel MS, Beck CD, Wu KH et al (1998) Integrin-mediated short-term memory in Drosophila. Nature 391:455–460. doi: 10.1038/35079 CrossRefPubMedGoogle Scholar
  27. Gungor B, Gombos I, Crul T et al (2014) Rac1 participates in thermally induced alterations of the cytoskeleton, cell morphology and lipid rafts, and regulates the expression of heat shock proteins in B16F10 melanoma cells. PLoS One 9:e89136. doi: 10.1371/journal.pone.0089136 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Haldimann P, Muriset M, Vígh L, Goloubinoff P (2011) The novel hydroxylamine derivative NG-094 suppresses polyglutamine protein toxicity in Caenorhabditis elegans. J Biol Chem 286:18784–18794. doi: 10.1074/jbc.M111.234773 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Han SI, Oh SY, Woo SH et al (2001) Implication of a small GTPase Rac1 in the activation of c-Jun N-terminal kinase and heat shock factor in response to heat shock. J Biol Chem 276:1889–1895. doi: 10.1074/jbc.M006042200 CrossRefPubMedGoogle Scholar
  30. Hooper PL, Hooper PL (2009) Inflammation, heat shock proteins, and type 2 diabetes. Cell Stress Chaperones 14:113–115. doi: 10.1007/s12192-008-0073-x CrossRefPubMedGoogle Scholar
  31. Hooper PL, Hooper PL, Tytell M, Vígh L (2010) Xenohormesis: health benefits from an eon of plant stress response evolution. Cell Stress Chaperones 15:761–770. doi: 10.1007/s12192-010-0206-x CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hoshino T, Murao N, Namba T et al (2011) Suppression of Alzheimer’s disease-related phenotypes by expression of heat shock protein 70 in mice. J Neurosci 31:5225–5234. doi: 10.1523/JNEUROSCI.5478-10.2011 CrossRefPubMedGoogle Scholar
  33. Hotulainen P, Hoogenraad CC (2010) Actin in dendritic spines: connecting dynamics to function. J Cell Biol 189:619–629. doi: 10.1083/jcb.201003008 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hügel HM, Jackson N (2014) Danshen diversity defeating dementia. Bioorg Med Chem Lett 24:708–716. doi: 10.1016/j.bmcl.2013.12.042 CrossRefPubMedGoogle Scholar
  35. Jiang Y-Q, Wang X-L, Cao X-H et al (2013) Increased heat shock transcription factor 1 in the cerebellum reverses the deficiency of Purkinje cells in Alzheimer’s disease. Brain Res 1519:105–111. doi: 10.1016/j.brainres.2013.04.059 CrossRefPubMedGoogle Scholar
  36. Kasza Á, Hunya Á, Frank Z et al (2016) Dihydropyridine derivatives modulate heat shock responses and have a neuroprotective effect in a transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis. doi: 10.3233/JAD-150860 PubMedPubMedCentralGoogle Scholar
  37. Kim E, Wang B, Sastry N et al (2016) NEDD4-mediated HSF1 degradation underlies α-synucleinopathy. Hum Mol Genet 25:211–222. doi: 10.1093/hmg/ddv445 CrossRefPubMedGoogle Scholar
  38. King MK, Pardo M, Cheng Y et al (2014) Glycogen synthase kinase-3 inhibitors: rescuers of cognitive impairments. Pharmacol Ther 141:1–12. doi: 10.1016/j.pharmthera.2013.07.010 CrossRefPubMedGoogle Scholar
  39. Kittler JT, Moss SJ (2001) Neurotransmitter receptor trafficking and the regulation of synaptic strength. Traffic 2:437–448CrossRefPubMedGoogle Scholar
  40. Kondo N, Katsuno M, Adachi H et al (2013) Heat shock factor-1 influences pathological lesion distribution of polyglutamine-induced neurodegeneration. Nat Commun 4:1405. doi: 10.1038/ncomms2417 CrossRefPubMedGoogle Scholar
  41. Laurin D, Verreault R, Lindsay J et al (2001) Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch Neurol 58:498–504CrossRefPubMedGoogle Scholar
  42. Li G, Currie RW, Ali IS (2004) Insulin potentiates expression of myocardial heat shock protein 70. Eur J Cardiothorac Surg 26:281–288. doi: 10.1016/j.ejcts.2004.04.018 CrossRefPubMedGoogle Scholar
  43. Lin Y, Skeberdis VA, Francesconi A et al (2004) Postsynaptic density protein-95 regulates NMDA channel gating and surface expression. J Neurosci 24:10138–10148. doi: 10.1523/JNEUROSCI.3159-04.2004 CrossRefPubMedGoogle Scholar
  44. Lin T-W, Chen S-J, Huang T-Y et al (2012) Different types of exercise induce differential effects on neuronal adaptations and memory performance. Neurobiol Learn Mem 97:140–147. doi: 10.1016/j.nlm.2011.10.006 CrossRefPubMedGoogle Scholar
  45. Locke M, Noble EG, Tanguay RM et al (1995) Activation of heat-shock transcription factor in rat heart after heat shock and exercise. Am J Physiol 268:C1387–C1394PubMedGoogle Scholar
  46. Moghimian M, Faghihi M, Karimian SM et al (2014) Upregulated Hsp27 expression in the cardioprotection induced by acute stress and oxytocin in ischemic reperfused hearts of the rat. Chin J Physiol 57:329–334. doi: 10.4077/CJP.2014.BAC257 CrossRefPubMedGoogle Scholar
  47. Nagy E, Balogi Z, Gombos I et al (2007) Hyperfluidization-coupled membrane microdomain reorganization is linked to activation of the heat shock response in a murine melanoma cell line. Proc Natl Acad Sci U S A 104:7945–7950. doi: 10.1073/pnas.0702557104 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Needleman LA, McAllister AK (2008) Seeing the light: insulin receptors and the CNS. Neuron 58:653–655. doi: 10.1016/j.neuron.2008.06.001 CrossRefPubMedGoogle Scholar
  49. Neef DW, Jaeger AM, Thiele DJ (2011) Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat Rev Drug Discov 10:930–944. doi: 10.1038/nrd3453 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Nikitina EA, Kaminskaya AN, Molotkov DA et al (2014) Effect of heat shock on courtship behavior, sound production, and learning in comparison with the brain content of LIMK1 in Drosophila melanogaster males with altered structure of the limk1 gene. J Evol Biochem Physiol 50:154–166. doi: 10.1134/S0022093014020082 CrossRefGoogle Scholar
  51. Ortega L, Calvillo M, Luna F et al (2014) 17-AAG improves cognitive process and increases heat shock protein response in a model lesion with Aβ25-35. Neuropeptides 48:221–232. doi: 10.1016/j.npep.2014.04.006 CrossRefPubMedGoogle Scholar
  52. Panossian A, Wikman G, Kaur P, Asea A (2009) Adaptogens exert a stress-protective effect by modulation of expression of molecular chaperones. Phytomedicine 16:617–622. doi: 10.1016/j.phymed.2008.12.003 CrossRefPubMedGoogle Scholar
  53. Paris D, Ganey NJ, Laporte V et al (2010) Reduction of beta-amyloid pathology by celastrol in a transgenic mouse model of Alzheimer’s disease. J Neuroinflammation 7:17. doi: 10.1186/1742-2094-7-17 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Rolland Y, Rival L, Pillard F et al (2000) Feasibility [corrected] of regular physical exercise for patients with moderate to severe Alzheimer disease. J Nutr Health Aging 4:109–113PubMedGoogle Scholar
  55. Shah T, Verdile G, Sohrabi H et al (2014) A combination of physical activity and computerized brain training improves verbal memory and increases cerebral glucose metabolism in the elderly. Transl Psychiatry 4:e487. doi: 10.1038/tp.2014.122 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sharma S, Mishra R, Walker BL et al (2015) Celastrol, an oral heat shock activator, ameliorates multiple animal disease models of cell death. Cell Stress Chaperones 20:185–201. doi: 10.1007/s12192-014-0536-1 CrossRefPubMedGoogle Scholar
  57. Sheng M, Kim E (2011) The postsynaptic organization of synapses. Cold Spring Harb Perspect Biol. doi: 10.1101/cshperspect.a005678 PubMedPubMedCentralGoogle Scholar
  58. Silva MC, Amaral MD, Morimoto RI (2013) Neuronal reprograming of protein homeostasis by calcium-dependent regulation of the heat shock response. PLoS Genet. doi: 10.1371/journal.pgen.1003711 Google Scholar
  59. Solberg NO, Chamberlin R, Vigil JR et al (2014) Optical and SPION-enhanced MR imaging shows that trans-stilbene inhibitors of NF-kB concomitantly lower Alzheimer’s disease plaque formation and microglial activation in AβPP/PS-1 transgenic mouse brain. J Alzheimers Dis 40:191–212. doi: 10.3233/JAD-131031 PubMedPubMedCentralGoogle Scholar
  60. Suzuki T, Yao W-D (2013) Molecular and structural bases for postsynaptic signal processing: interaction between postsynaptic density and postsynaptic membrane rafts. J Neurorestoratol Vol 2:1. doi: 10.2147/JN.S49206 CrossRefGoogle Scholar
  61. Tatum MC, Ooi FK, Chikka MR et al (2015) Neuronal serotonin release triggers the heat shock response in C. elegans in the absence of temperature increase. Curr Biol 25:163–174. doi: 10.1016/j.cub.2014.11.040 CrossRefPubMedGoogle Scholar
  62. Teiten M-H, Reuter S, Schmucker S et al (2009) Induction of heat shock response by curcumin in human leukemia cells. Cancer Lett 279:145–154. doi: 10.1016/j.canlet.2009.01.031 CrossRefPubMedGoogle Scholar
  63. Thirstrup K, Sotty F, Montezinho LCP et al (2015) Linking HSP90 target occupancy to HSP70 induction and efficacy in mouse brain. Pharmacol Res 104:197–205. doi: 10.1016/j.phrs.2015.12.028 CrossRefPubMedGoogle Scholar
  64. Ting YK, Morikawa K, Kurata Y et al (2011) Transcriptional activation of the anchoring protein SAP97 by heat shock factor (HSF)-1 stabilizes K(v) 1.5 channels in HL-1 cells. Br J Pharmacol 162:1832–1842. doi: 10.1111/j.1476-5381.2011.01204.x CrossRefPubMedPubMedCentralGoogle Scholar
  65. Török Z, Crul T, Maresca B et al (2014) Plasma membranes as heat stress sensors: from lipid-controlled molecular switches to therapeutic applications. Biochim Biophys Acta 1838:1594–1618. doi: 10.1016/j.bbamem.2013.12.015 CrossRefPubMedGoogle Scholar
  66. Varodayan FP, Pignataro L, Harrison NL (2011) Alcohol induces synaptotagmin 1 expression in neurons via activation of heat shock factor 1. Neuroscience 193:63–71. doi: 10.1016/j.neuroscience.2011.07.035 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Vaughn JE (1989) Fine structure of synaptogenesis in the vertebrate central nervous system. Synapse 3:255–285. doi: 10.1002/syn.890030312 CrossRefPubMedGoogle Scholar
  68. Verma P, Pfister JA, Mallick S, D’Mello SR (2014) HSF1 protects neurons through a novel trimerization- and HSP-independent mechanism. J Neurosci 34:1599–1612. doi: 10.1523/JNEUROSCI.3039-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Vidoni ED, Johnson DK, Morris JK et al (2015) Dose-response of aerobic exercise on cognition: a community-based, pilot randomized controlled trial. PLoS One 10:e0131647. doi: 10.1371/journal.pone.0131647 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Vigh L, Nakamoto H, Landry J et al (2007) Membrane regulation of the stress response from prokaryotic models to mammalian cells. Ann N Y Acad Sci 1113:40–51. doi: 10.1196/annals.1391.027 CrossRefPubMedGoogle Scholar
  71. Walcott SE, Heikkila JJ (2010) Celastrol can inhibit proteasome activity and upregulate the expression of heat shock protein genes, hsp30 and hsp70, in Xenopus laevis A6 cells. Comp Biochem Physiol A Mol Integr Physiol 156:285–293. doi: 10.1016/j.cbpa.2010.02.015 CrossRefPubMedGoogle Scholar
  72. Westerheide SD, Anckar J, Stevens SM et al (2009) Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323:1063–1066. doi: 10.1126/science.1165946 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Yang HJ, Kwon DY, Kim MJ et al (2015) Red peppers with moderate and severe pungency prevent the memory deficit and hepatic insulin resistance in diabetic rats with Alzheimer’s disease. Nutr Metab (Lond) 12:9. doi: 10.1186/s12986-015-0005-6 CrossRefGoogle Scholar
  74. Zhang L, Fang Y, Xu Y et al (2015a) Curcumin improves amyloid β-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS One 10:e0131525. doi: 10.1371/journal.pone.0131525 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Zhang L, Hsu F-C, Mojsilovic-Petrovic J et al (2015b) Structure-function analysis of SAP97, a modular scaffolding protein that drives dendrite growth. Mol Cell Neurosci 65:31–44. doi: 10.1016/j.mcn.2015.02.011 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Zhang Y, Dai C-L, Chen Y et al (2016) Intranasal insulin prevents anesthesia-induced spatial learning and memory deficit in mice. Sci Rep 6:21186. doi: 10.1038/srep21186 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Zhao Z, Sabirzhanov B, Wu J et al (2014) Voluntary exercise preconditioning activates multiple anti-apoptotic mechanisms and improves neurological recovery after experimental traumatic brain injury. J Neurotrauma. doi: 10.1089/neu.2014.3739 PubMedPubMedCentralGoogle Scholar
  78. Zhou D, Liu Y, Ye J et al (2013) A rat retinal damage model predicts for potential clinical visual disturbances induced by Hsp90 inhibitors. Toxicol Appl Pharmacol 273:401–409. doi: 10.1016/j.taap.2013.09.018 CrossRefPubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2016

Authors and Affiliations

  • Philip L. Hooper
    • 1
    Email author
  • Heather D. Durham
    • 2
  • Zsolt Török
    • 3
  • Paul L. Hooper
    • 4
  • Tim Crul
    • 3
  • László Vígh
    • 3
  1. 1.Division of Endocrinology, Metabolism and Diabetes, Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraUSA
  2. 2.Department of Neurology/Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealCanada
  3. 3.Institute of Biochemistry, Biological Research CenterHungarian Academy of SciencesSzegedHungary
  4. 4.Department of AnthropologyEmory UniversityAtlantaUSA

Personalised recommendations