Advertisement

Cell Stress and Chaperones

, Volume 21, Issue 4, pp 697–705 | Cite as

Curcumin exerts anti-inflammatory and antioxidative properties in 1-methyl-4-phenylpyridinium ion (MPP+)-stimulated mesencephalic astrocytes by interference with TLR4 and downstream signaling pathway

  • Song Yu
  • Xu Wang
  • Xingliang He
  • Yue Wang
  • Sujie Gao
  • Lu Ren
  • Yan ShiEmail author
Original Paper

Abstract

Neuroinflammation is closely associated with the pathophysiology of neurodegenerative diseases including Parkinson’s disease (PD). Recent evidence indicates that astrocytes also play pro-inflammatory roles in the central nervous system (CNS) by activation with toll-like receptor (TLR) ligands. Therefore, targeting anti-inflammation may provide a promising therapeutic strategy for PD. Curcumin, a polyphenolic compound isolated from Curcuma longa root, has been commonly used for the treatment of neurodegenerative diseases. However, the details of how curcumin exerts neuroprotection remain uncertain. Here, we investigated the protective effect of curcumin on 1-methyl-4-phenylpyridinium ion-(MPP+-) stimulated primary astrocytes. Our results showed that MPP+ stimulation resulted in significant production of tumor necrosis factor (TNF)-α, interleukin (IL-6), and reactive oxygen species (ROS) in primary mesencephalic astrocytes. Curcumin pretreatment decreased the levels of these pro-inflammatory cytokines while increased IL-10 expression in MPP+-stimulated astrocytes. In addition, curcumin increased the levels of antioxidant glutathione (GSH) and reduced ROS production. Our results further showed that curcumin decreased the levels of TLR4 and its downstream effectors including NF-κB, IRF3, MyD88, and TIRF that are induced by MPP+ as well as inhibited the immunoreactivity of TLR4 and morphological activation in MPP+-stimulated astrocytes. Together, data suggest that curcumin might exert a beneficial effect on neuroinflammation in the pathophysiology of PD.

Keywords

Curcumin Astrocytes 1-Methyl-4-phenylpyridinium ion Neuroinflammation Oxidative stress Toll-like receptor 4 

Notes

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (No. 81203004) and the Postdoctoral Science Foundation of China (No. 2013M540234).

Compliance with ethical standards

Conflicts of interest

The authors report no conflicts of interest in this work.

References

  1. Ak T, Gulcin I (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174:27–37. doi: 10.1016/j.cbi.2008.05.003 CrossRefPubMedGoogle Scholar
  2. Akira S, Sato S (2003) Toll-like receptors and their signaling mechanisms. Scand J Infect Dis 35:555–562CrossRefPubMedGoogle Scholar
  3. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680. doi: 10.1038/90609 CrossRefPubMedGoogle Scholar
  4. Akira S, Uematsu S, Takeuchi O, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801. doi: 10.1016/j.cell.2006.02.015 CrossRefPubMedGoogle Scholar
  5. Alvarez-Fischer D et al (2013) Probenecid potentiates MPTP/MPP+ toxicity by interference with cellular energy metabolism. J Neurochem 127:782–792. doi: 10.1111/jnc.12343 CrossRefPubMedGoogle Scholar
  6. Beutler B, Hoebe K, Du X, Ulevitch RJ (2003) How we detect microbes and respond to them: the Toll-like receptors and their transducers. J Leukoc Biol 74:479–485. doi: 10.1189/jlb.0203082
  7. Bournival J, Plouffe M, Renaud J, Provencher C, Martinoli MG (2012) Quercetin and sesamin protect dopaminergic cells from MPP + -induced neuroinflammation in a microglial (N9)-neuronal (PC12) coculture system. Oxidative Med Cell Longev 2012:921–941. doi: 10.1155/2012/921941 CrossRefGoogle Scholar
  8. Bowman CC, Rasley A, Tranguch SL, Marriott I (2003) Cultured astrocytes express toll-like receptors for bacterial products. Glia 43:281–291. doi: 10.1002/glia.10256 CrossRefPubMedGoogle Scholar
  9. Carpentier PA, Begolka WS, Olson JK, Elhofy A, Karpus WJ, Miller SD, Miller SD (2005) Differential activation of astrocytes by innate and adaptive immune stimuli. Glia 49:360–374. doi: 10.1002/glia.20117 CrossRefPubMedGoogle Scholar
  10. Damier P, Hirsch EC, Zhang P, Agid Y, Javoy-Agid F (1993) Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 52:1–6CrossRefPubMedGoogle Scholar
  11. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909CrossRefPubMedGoogle Scholar
  12. De Miranda BR, Popichak KA, Hammond SL, Miller JA, Safe S, Tjalkens RB (2015) Novel para-phenyl substituted diindolylmethanes protect against MPTP neurotoxicity and suppress glial activation in a mouse model of Parkinson’s disease. Toxicol Sci Off J Soc Toxicol 143:360–373. doi: 10.1093/toxsci/kfu236 CrossRefGoogle Scholar
  13. Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28:138–145. doi: 10.1016/j.it.2007.01.005 CrossRefPubMedGoogle Scholar
  14. Ghosh S, Banerjee S, Sil PC (2015) The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: a recent update. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 83:111–124. doi: 10.1016/j.fct.2015.05.022 CrossRefGoogle Scholar
  15. Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397. doi: 10.1016/S1474-4422(09)70062-6 CrossRefPubMedGoogle Scholar
  16. Jack CS et al (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175:4320–4330CrossRefPubMedGoogle Scholar
  17. Jurenka JS (2009) Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Alternat Med Rev J Clin Ther 14:141–153Google Scholar
  18. Kagan JC, Medzhitov R (2006) Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125:943–955. doi: 10.1016/j.cell.2006.03.047 CrossRefPubMedGoogle Scholar
  19. Karin M, Delhase M (2000) The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin Immunol 12:85–98. doi: 10.1006/smim.2000.0210 CrossRefPubMedGoogle Scholar
  20. Kaur H, Patro I, Tikoo K, Sandhir R (2015) Curcumin attenuates inflammatory response and cognitive deficits in experimental model of chronic epilepsy. Neurochem Int 89:40–50. doi: 10.1016/j.neuint.2015.07.009 CrossRefPubMedGoogle Scholar
  21. Khan MM, Kempuraj D, Zaheer S, Zaheer A (2014a) Glia maturation factor deficiency suppresses 1-methyl-4-phenylpyridinium-induced oxidative stress in astrocytes. J Mol Neurosci 53:590–599. doi: 10.1007/s12031-013-0225-z CrossRefPubMedPubMedCentralGoogle Scholar
  22. Khan MM, Zaheer S, Nehman J, Zaheer A (2014b) Suppression of glia maturation factor expression prevents 1-methyl-4-phenylpyridinium (MPP(+))-induced loss of mesencephalic dopaminergic neurons. Neuroscience 277:196–205. doi: 10.1016/j.neuroscience.2014.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kumar H, Kawai T, Akira S (2009) Toll-like receptors and innate immunity. Biochem Biophys Res Commun 388:621–625. doi: 10.1016/j.bbrc.2009.08.062 CrossRefPubMedGoogle Scholar
  24. Lee WH, Loo CY, Bebawy M, Luk F, Mason RS, Rohanizadeh R (2013) Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol 11:338–378. doi: 10.2174/1570159X11311040002 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lin YG et al (2007) Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin Cancer Res Off J Am Assoc Cancer Res 13:3423–3430. doi: 10.1158/1078-0432.CCR-06-3072 CrossRefGoogle Scholar
  26. Liu L, Xu H, Jiang H, Wang J, Song N, Xie J (2010) Ghrelin prevents 1-methyl-4-phenylpyridinium ion-induced cytotoxicity through antioxidation and NF-kappaB modulation in MES23.5 cells. Exp Neurol 222:25–29. doi: 10.1016/j.expneurol.2009.11.009 CrossRefPubMedGoogle Scholar
  27. Ma D et al (2013) The neurotoxic effect of astrocytes activated with toll-like receptor ligands. J Neuroimmunol 254:10–18. doi: 10.1016/j.jneuroim.2012.08.010 CrossRefPubMedGoogle Scholar
  28. Mansouri Z, Sabetkasaei M, Moradi F, Masoudnia F, Ataie A (2012) Curcumin has neuroprotection effect on homocysteine rat model of Parkinson. J Mol Neurosci 47:234–242. doi: 10.1007/s12031-012-9727-3 CrossRefPubMedGoogle Scholar
  29. More SV, Kumar H, Kim IS, Song SY, Choi DK (2013) Cellular and molecular mediators of neuroinflammation in the pathogenesis of Parkinson’s disease. Mediat Inflamm 2013:952375. doi: 10.1155/2013/952375 CrossRefGoogle Scholar
  30. Morimoto H et al (2013) ROS are required for mouse spermatogonial stem cell self-renewal. Cell Stem Cell 12:774–786. doi: 10.1016/j.stem.2013.04.001 CrossRefPubMedGoogle Scholar
  31. Noelker C et al (2013) Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease. Sci Rep 3:1393. doi: 10.1038/srep01393 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Pan MH, Lin-Shiau SY, Lin JK (2000) Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IkappaB kinase and NFkappaB activation in macrophages. Biochem Pharmacol 60:1665–1676CrossRefPubMedGoogle Scholar
  33. Parpura V et al (2012) Glial cells in (patho)physiology. J Neurochem 121:4–27. doi: 10.1111/j.1471-4159.2012.07664.x CrossRefPubMedPubMedCentralGoogle Scholar
  34. Phani S, Loike JD, Przedborski S (2012) Neurodegeneration and inflammation in Parkinson’s disease. Parkinsonism Relat Disord 18(1):S207–209. doi: 10.1016/S1353-8020(11)70064-5 CrossRefPubMedGoogle Scholar
  35. Ray B, Lahiri DK (2009) Neuroinflammation in Alzheimer’s disease: different molecular targets and potential therapeutic agents including curcumin. Curr Opin Pharmacol 9:434–444. doi: 10.1016/j.coph.2009.06.012 CrossRefPubMedGoogle Scholar
  36. Rossi D (2015) Astrocyte physiopathology: at the crossroads of intercellular networking, inflammation and cell death. Prog Neurobiol 130:86–120. doi: 10.1016/j.pneurobio.2015.04.003 CrossRefPubMedGoogle Scholar
  37. Schober A (2004) Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 318:215–224. doi: 10.1007/s00441-004-0938-y CrossRefPubMedGoogle Scholar
  38. Seyedzadeh MH, Safari Z, Zare A, Gholizadeh Navashenaq J, Razavi SA, Kardar GA, Khorramizadeh MR (2014) Study of curcumin immunomodulatory effects on reactive astrocyte cell function. Int Immunopharmacol 22:230–235. doi: 10.1016/j.intimp.2014.06.035 CrossRefPubMedGoogle Scholar
  39. Tang SC et al (2007) Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci U S A 104:13798–13803. doi: 10.1073/pnas.0702553104 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Tansey MG, Goldberg MS (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37:510–518. doi: 10.1016/j.nbd.2009.11.004 CrossRefPubMedGoogle Scholar
  41. van Loo G et al (2006) Inhibition of transcription factor NF-kappaB in the central nervous system ameliorates autoimmune encephalomyelitis in mice. Nat Immunol 7:954–961. doi: 10.1038/ni1372 CrossRefPubMedGoogle Scholar
  42. Wei M, Li Z, Xiao L, Yang Z (2015) Effects of ROS-relative NF-kappaB signaling on high glucose-induced TLR4 and MCP-1 expression in podocyte injury. Mol Immunol 68:261–271. doi: 10.1016/j.molimm.2015.09.002 CrossRefPubMedGoogle Scholar
  43. Wong SS, Li RH, Stadlin A (1999) Oxidative stress induced by MPTP and MPP(+): selective vulnerability of cultured mouse astrocytes. Brain Res 836:237–244CrossRefPubMedGoogle Scholar
  44. Youn HS, Saitoh SI, Miyake K, Hwang DH (2006) Inhibition of homodimerization of Toll-like receptor 4 by curcumin. Biochem Pharmacol 72:62–69. doi: 10.1016/j.bcp.2006.03.022 CrossRefPubMedGoogle Scholar
  45. Yu S et al (2010) Curcumin prevents dopaminergic neuronal death through inhibition of the c-Jun N-terminal kinase pathway. Rejuvenation Res 13:55–64. doi: 10.1089/rej.2009.0908 CrossRefPubMedGoogle Scholar
  46. Zhang Q, Kang R, Zeh HJ 3rd, Lotze MT, Tang D (2013) DAMPs and autophagy: cellular adaptation to injury and unscheduled cell death. Autophagy 9:451–458. doi: 10.4161/auto.23691 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zhou P et al (2016) TLR4 signaling in MPP(+)-induced activation of BV-2 cells. Neural Plast 2016:5076740. doi: 10.1155/2016/5076740 PubMedPubMedCentralGoogle Scholar
  48. Zhu HT et al (2014) Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-kappaB signaling pathway in experimental traumatic brain injury. J Neuroinflammation 11:59. doi: 10.1186/1742-2094-11-59 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Cell Stress Society International 2016

Authors and Affiliations

  • Song Yu
    • 1
  • Xu Wang
    • 1
  • Xingliang He
    • 2
  • Yue Wang
    • 1
  • Sujie Gao
    • 3
  • Lu Ren
    • 4
  • Yan Shi
    • 5
    Email author
  1. 1.Department of Histology and EmbryologyLiaoning University of Traditional Chinese MedicineShenyangPeople’s Republic of China
  2. 2.Department of Sports MedicineShenyang Sports UniversityShenyangPeople’s Republic of China
  3. 3.Department of Cardiac FunctionThe Second Staff Hospital of Liaohe Oilfield CompanyPanjinPeople’s Republic of China
  4. 4.Department of Mental DiseasesLiaoning University of Traditional Chinese MedicineShenyangPeople’s Republic of China
  5. 5.Department of Internal Medicine of Traditional Chinese MedicineLiaoning University of Traditional Chinese MedicineShenyangPeople’s Republic of China

Personalised recommendations