Skip to main content
Log in

Stress chaperone mortalin regulates human melanogenesis

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

In order to identify the cellular factors involved in human melanogenesis, we carried out shRNA-mediated loss-of-function screening in conjunction with induction of melanogenesis by 1-oleoyl-2-acetyl-glycerol (OAG) in human melanoma cells using biochemical and visual assays. Gene targets of the shRNAs (that caused loss of OAG-induced melanogenesis) and their pathways, as determined by bioinformatics, revealed involvement of proteins that regulate cell stress response, mitochondrial functions, proliferation, and apoptosis. We demonstrate, for the first time, that the mitochondrial stress chaperone mortalin is crucial for melanogenesis. Upregulation of mortalin was closely associated with melanogenesis in in vitro cell-based assays and clinical samples of keloids with hyperpigmentation. Furthermore, its knockdown resulted in compromised melanogenesis. The data proposed mortalin as an important protein that may be targeted to manipulate pigmentation for cosmetic and related disease therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Malek ZA, Kadekaro AL, Swope VB (2010) Stepping up melanocytes to the challenge of UV exposure. Pigment Cell Melanoma Res 23:171–186

    Article  CAS  PubMed  Google Scholar 

  • Bagchi D, Sen CK, Bagchi M, Atalay M (2004) Anti-angiogenic, antioxidant, and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula. Biochemistry (Mosc) 69:75–80

    Article  CAS  Google Scholar 

  • Bellei B, Maresca V, Flori E, Pitisci A, Larue L, Picardo M (2010) p38 regulates pigmentation via proteasomal degradation of tyrosinase. J Biol Chem 285:7288–7299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benathan M (1997) Opposite regulation of tyrosinase and glutathione peroxidase by intracellular thiols in human melanoma cells. Arch Dermatol Res 289:341–346

    Article  CAS  PubMed  Google Scholar 

  • Bottinger L, Oeljeklaus S, Guiard B, Rospert S, Warscheid B, Becker T (2015) Mitochondrial heat shock protein (Hsp) 70 and Hsp10 cooperate in the formation of Hsp60 complexes. J Biol Chem 290:11611–11622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cappello F, Marino Gammazza A, Palumbo Piccionello A, Campanella C, Pace A, Conway de Macario E, Macario AJ (2014) Hsp60 chaperonopathies and chaperonotherapy: targets and agents. Expert Opin Ther Targets 18:185–208

    Article  CAS  PubMed  Google Scholar 

  • Chiasserini D, Tozzi A, de Iure A, Tantucci M, Susta F, Orvietani PL, Koya K, Binaglia L, Calabresi P (2011) Mortalin inhibition in experimental Parkinson’s disease. Mov Disord 26:1639–1647

    Article  PubMed  Google Scholar 

  • Choi YK, Rho YK, Yoo KH, Lim YY, Li K, Kim BJ, Seo SJ, Kim MN, Hong CK, Kim DS (2010) Effects of vitamin C vs. multivitamin on melanogenesis: comparative study in vitro and in vivo. Int J Dermatol 49:218–226

    Article  CAS  PubMed  Google Scholar 

  • Dadzie OE, Jablonski NG, Mahalingam M, Dupuy A, Petit A (2014) Skin cancer, photoprotection, and skin of color. J Am Acad Dermatol 71:586

    Article  PubMed  Google Scholar 

  • Daiwile AP, Naoghare PK, Giripunje MD, Rao PD, Ghosh TK, Krishnamurthi K, Alimba CG, Sivanesan S (2015) Correlation of melanophore index with a battery of functional genomic stress indicators for measurement of environmental stress in aquatic ecosystem. Environ Toxicol Pharmacol 39:489–495

    Article  CAS  PubMed  Google Scholar 

  • Daniele T, Hurbain I, Vago R, Casari G, Raposo G, Tacchetti C, Schiaffino MV (2014) Mitochondria and melanosomes establish physical contacts modulated by Mfn2 and involved in organelle biogenesis. Curr Biol 24:393–403

    Article  CAS  PubMed  Google Scholar 

  • del Cerro S, Merino S, Martinez-de la Puente J, Lobato E, Ruiz-de-Castaneda R, Rivero-de Aguilar J, Martinez J, Morales J, Tomas G, Moreno J (2010) Carotenoid-based plumage colouration is associated with blood parasite richness and stress protein levels in blue tits (Cyanistes caeruleus). Oecologia 162:825–835

    Article  PubMed  Google Scholar 

  • Denat L, Kadekaro AL, Marrot L, Leachman SA, Abdel-Malek ZA (2014) Melanocytes as instigators and victims of oxidative stress. J Invest Dermatol 134:1512–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deocaris CC, Kaul SC, Wadhwa R (2009) The versatile stress protein mortalin as a chaperone therapeutic agent. Protein Pept Lett 16:517–529

    Article  CAS  PubMed  Google Scholar 

  • Deocaris CC, Lu WJ, Kaul SC, Wadhwa R (2013) Druggability of mortalin for cancer and neuro-degenerative disorders. Curr Pharm Des 19:418–429

    Article  CAS  PubMed  Google Scholar 

  • Divi RL, Haverkos KJ, Humsi JA, Shockley ME, Thamire C, Nagashima K, Olivero OA, Poirier MC (2007) Morphological and molecular course of mitochondrial pathology in cultured human cells exposed long-term to Zidovudine. Environ Mol Mutagen 48:179–189

    Article  CAS  PubMed  Google Scholar 

  • Double KL (2006) Functional effects of neuromelanin and synthetic melanin in model systems. J Neural Transm 113:751–756

    Article  CAS  PubMed  Google Scholar 

  • Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–815

    Article  CAS  PubMed  Google Scholar 

  • Friedmann PS, Wren FE, Matthews JN (1990) Ultraviolet stimulated melanogenesis by human melanocytes is augmented by di-acyl glycerol but not TPA. J Cell Physiol 142:334–341

    Article  CAS  PubMed  Google Scholar 

  • Gaweda-Walerych K, Zekanowski C (2013) Integrated pathways of parkin control over mitochondrial maintenance—relevance to Parkinson’s disease pathogenesis. Acta Neurobiol Exp (Wars) 73:199–224

    Google Scholar 

  • Gerlach M, Double KL, Youdim MB, Riederer P (2006) Potential sources of increased iron in the substantia nigra of parkinsonian patients. J Neural Transm Supp l133-142

  • Giuliano S, Ohanna M, Ballotti R, Bertolotto C (2011) Advances in melanoma senescence and potential clinical application. Pigment Cell Melanoma Res 24:295–308

    Article  CAS  PubMed  Google Scholar 

  • Gordon PR, Gilchrest BA (1989) Human melanogenesis is stimulated by diacylglycerol. J Invest Dermatol 93:700–702

    Article  CAS  PubMed  Google Scholar 

  • Guercio-Hauer C, Macfarlane DF, Deleo VA (1994) Photodamage, photoaging and photoprotection of the skin. Am Fam Physician 50(327–332):334

    Google Scholar 

  • Gupta S, Knowlton AA (2002) Cytosolic heat shock protein 60, hypoxia, and apoptosis. Circulation 106:2727–2733

    Article  CAS  PubMed  Google Scholar 

  • Hu DN, Wakamatsu K, Ito S, McCormick SA (2009) Comparison of eumelanin and pheomelanin content between cultured uveal melanoma cells and normal uveal melanocytes. Melanoma Res 19:75–79

    Article  PubMed  Google Scholar 

  • Jablonski NG (2012) The evolution of human skin colouration and its relevance to health in the modern world. J R Coll Physicians Edinb 42:58–63

    Article  CAS  PubMed  Google Scholar 

  • Jablonski NG, Chaplin G (2000) The evolution of human skin coloration. J Hum Evol 39:57–106

    Article  CAS  PubMed  Google Scholar 

  • Jablonski NG, Chaplin G (2010) Colloquium paper: human skin pigmentation as an adaptation to UV radiation. Proc Natl Acad Sci U S A 107(Suppl 2):8962–8968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez-Cervantes C, Martinez-Esparza M, Perez C, Daum N, Solano F, Garcia-Borron JC (2001) Inhibition of melanogenesis in response to oxidative stress: transient downregulation of melanocyte differentiation markers and possible involvement of microphthalmia transcription factor. J Cell Sci 114:2335–2344

    CAS  PubMed  Google Scholar 

  • Jin J, Li GJ, Davis J, Zhu D, Wang Y, Pan C, Zhang J (2007) Identification of novel proteins associated with both alpha-synuclein and DJ-1. Mol Cell Proteomics 6:845–859

    Article  CAS  PubMed  Google Scholar 

  • Kaul SC, Deocaris CC, Wadhwa R (2007) Three faces of mortalin: a housekeeper, guardian and killer. Exp Gerontol 42:263–274

    Article  CAS  PubMed  Google Scholar 

  • Kim HE, Lee SG (2013) Induction of ATP synthase beta by H2O2 induces melanogenesis by activating PAH and cAMP/CREB/MITF signaling in melanoma cells. Int J Biochem Cell Biol 45:1217–1222

    Article  CAS  PubMed  Google Scholar 

  • Kim TJ, Cho MK, Lee JS, Whang KU, Jin SY, Hoshino T (2003) The expression of melanogenic proteins in Korean skin after ultraviolet irradiation. J Dermatol 30:665–672

    Article  CAS  PubMed  Google Scholar 

  • Kim ES, Shin JH, Seok SH, Kim JB, Chang H, Park SJ, Jo YK, Choi ES, Park JS, Yeom MH, Lim CS, Cho DH (2013) Autophagy mediates anti-melanogenic activity of 3′-ODI in B16F1 melanoma cells. Biochem Biophys Res Commun 442:165–170

    Article  CAS  PubMed  Google Scholar 

  • Kostyuk VA, Potapovich AI, Cesareo E, Brescia S, Guerra L, Valacchi G, Pecorelli A, Deeva IB, Raskovic D, De Luca C, Pastore S, Korkina LG (2010) Dysfunction of glutathione S-transferase leads to excess 4-hydroxy-2-nonenal and H(2)O(2) and impaired cytokine pattern in cultured keratinocytes and blood of vitiligo patients. Antioxid Redox Signal 13:607–620

    Article  CAS  PubMed  Google Scholar 

  • Lee JM (1998) Inhibition of p53-dependent apoptosis by the KIT tyrosine kinase: regulation of mitochondrial permeability transition and reactive oxygen species generation. Oncogene 17:1653–1662

    Article  CAS  PubMed  Google Scholar 

  • Lee B, Ahn Y, Kang SM, Park Y, Jeon YJ, Rho JM, Kim SW (2015) Stoichiometric expression of mtHsp40 and mtHsp70 modulates mitochondrial morphology and cristae structure via Opa1L cleavage. Mol Biol Cell 26:2156–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu WJ, Lee NP, Kaul SC, Lan F, Poon RT, Wadhwa R, Luk JM (2011) Induction of mutant p53-dependent apoptosis in human hepatocellular carcinoma by targeting stress protein mortalin. Int J Cancer 129:1806–1814

    Article  CAS  PubMed  Google Scholar 

  • Maresca V, Flori E, Briganti S, Mastrofrancesco A, Fabbri C, Mileo AM, Paggi MG, Picardo M (2008) Correlation between melanogenic and catalase activity in in vitro human melanocytes: a synergic strategy against oxidative stress. Pigment Cell Melanoma Res 21:200–205

    Article  CAS  PubMed  Google Scholar 

  • Marrot L, Meunier JR (2008) Skin DNA photodamage and its biological consequences. J Am Acad Dermatol 58:S139–148

    Article  PubMed  Google Scholar 

  • Marrot L, Belaidi JP, Chaubo C, Meunier JR, Perez P, Agapakis-Causse C (1998) An in vitro strategy to evaluate the phototoxicity of solar UV at the molecular and cellular level: application to photoprotection assessment. Eur J Dermatol 8:403–412

    CAS  PubMed  Google Scholar 

  • Miller AJ, Tsao H (2010) New insights into pigmentary pathways and skin cancer. Br J Dermatol 162:22–28

    Article  CAS  PubMed  Google Scholar 

  • Nasti TH, Timares L (2015) MC1R, eumelanin and pheomelanin: their role in determining the susceptibility to skin cancer. Photochem Photobiol 91:188–200

    Article  CAS  PubMed  Google Scholar 

  • Nishiura H, Kumagai J, Kashino G, Okada T, Tano K, Watanabe M (2012) The bystander effect is a novel mechanism of UVA-induced melanogenesis. Photochem Photobiol 88:389–397

    Article  CAS  PubMed  Google Scholar 

  • Pan T, Zhu J, Hwu WJ, Jankovic J (2012) The role of alpha-synuclein in melanin synthesis in melanoma and dopaminergic neuronal cells. PLoS One 7, e45183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panich U, Tangsupa-a-nan V, Onkoksoong T, Kongtaphan K, Kasetsinsombat K, Akarasereenont P, Wongkajornsilp A (2011) Inhibition of UVA-mediated melanogenesis by ascorbic acid through modulation of antioxidant defense and nitric oxide system. Arch Pharm Res 34:811–820

    Article  CAS  PubMed  Google Scholar 

  • Park SH, Kim DS, Kim WG, Ryoo IJ, Lee DH, Huh CH, Youn SW, Yoo ID, Park KC (2004) Terrein: a new melanogenesis inhibitor and its mechanism. Cell Mol Life Sci 61:2878–2885

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Shin JH, Jeong JI, Song JH, Jo YK, Kim ES, Lee EH, Hwang JJ, Lee EK, Chung SJ, Koh JY, Jo DG, Cho DH (2014) Down-regulation of mortalin exacerbates Abeta-mediated mitochondrial fragmentation and dysfunction. J Biol Chem 289:2195–2204

    Article  CAS  PubMed  Google Scholar 

  • Pavel S, van Nieuwpoort F, van der Meulen H, Out C, Pizinger K, Cetkovska P, Smit NP, Koerten HK (2004) Disturbed melanin synthesis and chronic oxidative stress in dysplastic naevi. Eur J Cancer 40:1423–1430

    Article  CAS  PubMed  Google Scholar 

  • Porameesanaporn Y, Uthaisang-Tanechpongtamb W, Jarintanan F, Jongrungruangchok S, Thanomsub Wongsatayanon B (2013) Terrein induces apoptosis in HeLa human cervical carcinoma cells through p53 and ERK regulation. Oncol Rep 29:1600–1608

    CAS  PubMed  Google Scholar 

  • Qu M, Zhou Z, Xu S, Chen C, Yu Z, Wang D (2011) Mortalin overexpression attenuates beta-amyloid-induced neurotoxicity in SH-SY5Y cells. Brain Res 1368:336–345

    Article  CAS  PubMed  Google Scholar 

  • Qu M, Zhou Z, Chen C, Li M, Pei L, Yang J, Wang Y, Li L, Liu C, Zhang G, Yu Z, Wang D (2012) Inhibition of mitochondrial permeability transition pore opening is involved in the protective effects of mortalin overexpression against beta-amyloid-induced apoptosis in SH-SY5Y cells. Neurosci Res 72:94–102

    Article  CAS  PubMed  Google Scholar 

  • Rosania GR (2005) Mitochondria give cells a tan. Chem Biol 12:412–413

    Article  CAS  PubMed  Google Scholar 

  • Salem MM, Shalbaf M, Gibbons NC, Chavan B, Thornton JM, Schallreuter KU (2009) Enhanced DNA binding capacity on up-regulated epidermal wild-type p53 in vitiligo by H2O2-mediated oxidation: a possible repair mechanism for DNA damage. FASEB J 23:3790–3807

    Article  CAS  PubMed  Google Scholar 

  • Schallreuter KU, Behrens-Williams S, Khaliq TP, Picksley SM, Peters EM, Marles LK, Westerhof W, Miehe B, Fanghanel J (2003) Increased epidermal functioning wild-type p53 expression in vitiligo. Exp Dermatol 12:268–277

    Article  CAS  PubMed  Google Scholar 

  • Schiller D, Cheng YC, Liu Q, Walter W, Craig EA (2008) Residues of Tim44 involved in both association with the translocon of the inner mitochondrial membrane and regulation of mitochondrial Hsp70 tethering. Mol Cell Biol 28:4424–4433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shih YY, Lee H, Nakagawara A, Juan HF, Jeng YM, Tsay YG, Lin DT, Hsieh FJ, Pan CY, Hsu WM, Liao YF (2011) Nuclear GRP75 binds retinoic acid receptors to promote neuronal differentiation of neuroblastoma. PLoS One 6, e26236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin JM, Kim MY, Sohn KC, Jung SY, Lee HE, Lim JW, Kim S, Lee YH, Im M, Seo YJ, Kim CD, Lee JH, Lee Y, Yoon TJ (2014) Nrf2 negatively regulates melanogenesis by modulating PI3K/Akt signaling. PLoS One 9, e96035

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh B, Gupta RS (2009) Conserved inserts in the Hsp60 (GroEL) and Hsp70 (DnaK) proteins are essential for cellular growth. Mol Genet Genomics 281:361–373

    Article  CAS  PubMed  Google Scholar 

  • Smit NP, van Nieuwpoort FA, Marrot L, Out C, Poorthuis B, van Pelt H, Meunier JR, Pavel S (2008) Increased melanogenesis is a risk factor for oxidative DNA damage—study on cultured melanocytes and atypical nevus cells. Photochem Photobiol 84:550–555

    Article  CAS  PubMed  Google Scholar 

  • Snyder JR, Hall A, Ni-Komatsu L, Khersonsky SM, Chang YT, Orlow SJ (2005) Dissection of melanogenesis with small molecules identifies prohibitin as a regulator. Chem Biol 12:477–484

    Article  CAS  PubMed  Google Scholar 

  • Stepien K (2010) The role of melanocytes in protection against photooxidative stress Krystyna Stepien. Postepy Biochem 56:290–297

    PubMed  Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2014) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–452

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas PD, Kishi H, Cao H, Ota M, Yamashita T, Singh S, Jimbow K (1999) Selective incorporation and specific cytocidal effect as the cellular basis for the antimelanoma action of sulphur containing tyrosine analogs. J Invest Dermatol 113:928–934

    Article  CAS  PubMed  Google Scholar 

  • Usui K, Ikeda T, Horibe Y, Nakao M, Hoshino T, Mizushima T (2015) Identification of HSP70-inducing activity in Arnica montana extract and purification and characterization of HSP70-inducers. J Dermatol Sci 78:67–75

    Article  CAS  PubMed  Google Scholar 

  • Vachtenheim J, Borovansky J (2010) "Transcription physiology" of pigment formation in melanocytes: central role of MITF. Exp Dermatol 19:617–627

    Article  CAS  PubMed  Google Scholar 

  • Wadhwa R, Kaul SC, Ikawa Y, Sugimoto Y (1993) Identification of a novel member of mouse hsp70 family. Its association with cellular mortal phenotype. J Biol Chem 268:6615–6621

    CAS  PubMed  Google Scholar 

  • Wadhwa R, Takano S, Kaur K, Aida S, Yaguchi T, Kaul Z, Hirano T, Taira K, Kaul SC (2005) Identification and characterization of molecular interactions between mortalin/mtHsp70 and HSP60. Biochem J 391:185–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widodo N, Kaur K, Shrestha BG, Takagi Y, Ishii T, Wadhwa R, Kaul SC (2007) Selective killing of cancer cells by leaf extract of Ashwagandha: identification of a tumor-inhibitory factor and the first molecular insights to its effect. Clin Cancer Res 13:2298–2306

    Article  CAS  PubMed  Google Scholar 

  • Williams D, Jung DW, Khersonsky SM, Heidary N, Chang YT, Orlow SJ (2004) Identification of compounds that bind mitochondrial F1F0 ATPase by screening a triazine library for correction of albinism. Chem Biol 11:1251–1259

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Luo JH, Jin JH (2008) Alpha-synuclein interacted proteins: the relevance with the pathogenesis of Parkinson’s disease. Zhejiang Da Xue Xue Bao Yi Xue Ban 37:524–530

    CAS  PubMed  Google Scholar 

  • Yamashita Y, Hoshino T, Matsuda M, Kobayashi C, Tominaga A, Nakamura Y, Nakashima K, Yokomizo K, Ikeda T, Mineda K, Maji D, Niwano Y, Mizushima T (2010) HSP70 inducers from Chinese herbs and their effect on melanin production. Exp Dermatol 19:e340–342

    Article  PubMed  Google Scholar 

  • Yamashita Y, Ikeda T, Matsuda M, Maji D, Hoshino T, Mizushima T (2012) Purification and characterization of HSP-inducers from Eupatorium lindleyanum. Biochem Pharmacol 83:909–922

    Article  CAS  PubMed  Google Scholar 

  • Zhu JY, Vereshchagina N, Sreekumar V, Burbulla LF, Costa AC, Daub KJ, Woitalla D, Martins LM, Kruger R, Rasse TM (2013) Knockdown of Hsc70-5/mortalin induces loss of synaptic mitochondria in a Drosophila Parkinson’s disease model. PLoS One 8, e83714

    Article  PubMed  PubMed Central  Google Scholar 

  • Zucca FA, Basso E, Cupaioli FA, Ferrari E, Sulzer D, Casella L, Zecca L (2014) Neuromelanin of the human substantia nigra: an update. Neurotox Res 25:13–23

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank T. Nakamoto, R. Singh, T. Yaguchi, and N. Shah for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil C. Kaul.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Author Contributions

RW and SCK conceived and coordinated the study and wrote the paper. RW, DP, RG, NW, NN, LL, and HA performed the experiments. RW, COY, NA, CM, and SCK analyzed the data. All authors reviewed the results and approved the final version of the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Schematic diagram showing loss-of-function screening for genes involved in melanogenesis pathway. Cells were transfected with shRNAs. Transfected cells were selected in puromycin-supplemented medium and then subjected to OAG treatment. Melanin content, tyrosinase activity, and melanosome staining were performed in parallel. The shRNAs that caused reduction in all the three parameters were selected for the next round. In total, four rounds of screening were done. (GIF 14 kb)

High Resolution (TIF 3670 kb)

Supplementary Fig. 2

Effect of mitochondrial inhibitors and OAG on ROS and mitochondrial membrane potential. H2O2 was used as a positive control for oxidative stress. It caused increase in ROS and collapse of mitochondrial membrane potential (loss of red staining). Creatine and OAG caused similar, although somewhat milder effect as revealed by increase in ROS staining and loss of red staining. (GIF 15 kb)

High Resolution (TIF 3500 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadhwa, R., Priyandoko, D., Gao, R. et al. Stress chaperone mortalin regulates human melanogenesis. Cell Stress and Chaperones 21, 631–644 (2016). https://doi.org/10.1007/s12192-016-0688-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-016-0688-2

Keywords

Navigation