Advertisement

Cell Stress and Chaperones

, Volume 21, Issue 2, pp 213–218 | Cite as

Anti-Hsp90 therapy in autoimmune and inflammatory diseases: a review of preclinical studies

  • Stefan Tukaj
  • Grzegorz Węgrzyn
Mini Review

Abstract

Heat shock protein 90 (Hsp90), a 90-kDa molecular chaperone, is responsible for biological activities of key signaling molecules (clients) such as protein kinases, ubiquitin ligases, steroid receptors, cell cycle regulators, and transcription factors regulating various cellular processes, including growth, survival, differentiation, and apoptosis. Because Hsp90 is also involved in stabilization of oncogenic ‘client’ proteins, its specific chaperone activity blockers are currently being tested as anticancer agents in advanced clinical trials. Recent in vitro and in vivo studies have shown that Hsp90 is also involved in activation of innate and adaptive cells of the immune system. For these reasons, pharmacological inhibition of Hsp90 has been evaluated in murine models of autoimmune and inflammatory diseases. This mini-review summarizes current knowledge of the effects of Hsp90 inhibitors on autoimmune and inflammatory diseases’ features and is based solely on preclinical studies.

Keywords

Anti-Hsp90 therapy Hsp70 Autoimmune diseases Mouse model 

References

  1. Ambade A, Catalano D, Lim A, Kopoyan A, Shaffer SA, Mandrekar P (2014) Inhibition of heat shock protein 90 alleviates steatosis and macrophage activation in murine alcoholic liver injury. J Hepatol 61:903–911CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bae J, Munshi A, Li C, Samur M, Prabhala R, Mitsiades C, Anderson KC, Munshi NC (2013) Heat shock protein 90 is critical for regulation of phenotype and functional activity of human T lymphocytes and NK cells. J Immunol 190:1360–1371CrossRefPubMedGoogle Scholar
  3. Barbatis C, Tsopanomichalou M (2009) Heat shock proteins in inflammatory bowel disease. Ann Gastroenterol 22:244–247Google Scholar
  4. Borges TJ, Wieten L, van Herwijnen MJ, Broere F, van der Zee R, Bonorino C, van Eden W (2012) The anti-inflammatory mechanisms of Hsp70. Front Immunol 3:95CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chatterjee A, Dimitropoulou C, Drakopanayiotakis F, Antonova G, Snead C, Cannon J, Venema RC, Catravas JD (2007) Heat shock protein 90 inhibitors prolong survival, attenuate inflammation, and reduce lung injury in murine sepsis. Am J Respir Crit Care Med 176:667–675CrossRefPubMedPubMedCentralGoogle Scholar
  6. Collins CB, Aherne CM, Yeckes A, Pound K, Eltzschig HK, Jedlicka P, de Zoeten EF (2013) Inhibition of N-terminal ATPase on HSP90 attenuates colitis through enhanced Treg function. Mucosal Immunol 6:960–971CrossRefPubMedPubMedCentralGoogle Scholar
  7. Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164:1079–1106CrossRefPubMedPubMedCentralGoogle Scholar
  8. Davidson A, Diamond B (2001) Autoimmune diseases. N Engl J Med 345:340–350CrossRefPubMedGoogle Scholar
  9. Dello Russo C, Polak PE, Mercado PR, Spagnolo A, Sharp A, Murphy P, Kamal A, Burrows FJ, Fritz LC, Feinstein DL (2006) The heat-shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin suppresses glial inflammatory responses and ameliorates experimental autoimmune encephalomyelitis. J Neurochem 99:1351–1362CrossRefPubMedGoogle Scholar
  10. Felts SJ, Owen BA, Nguyen P, Trepel J, Donner DB, Toft DO (2000) The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J Biol Chem 275:3305–3312CrossRefPubMedGoogle Scholar
  11. Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423:356–361CrossRefPubMedGoogle Scholar
  12. Garcia-Carbonero R, Carnero A, Paz-Ares L (2013) Inhibition of HSP90 molecular chaperones: moving into the clinic. Lancet Oncol 14:e358–e369CrossRefPubMedGoogle Scholar
  13. Han JM, Kwon NH, Lee JY, Jeong SJ, Jung HJ, Kim HR, Li Z, Kim S (2010) Identification of gp96 as a novel target for treatment of autoimmune disease in mice. PLoS One 5, e9792CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kasperkiewicz M, Schmidt E (2009) Current treatment of autoimmune blistering diseases. Curr Drug Discov Technol 6:270–280CrossRefPubMedGoogle Scholar
  16. Kasperkiewicz M, Muller R, Manz R, Magens M, Hammers CM et al (2011) Heat-shock protein 90 inhibition in autoimmunity to type VII collagen: evidence that nonmalignant plasma cells are not therapeutic targets. Blood 117:6135–6142CrossRefPubMedGoogle Scholar
  17. Langer T, Rosmus S, Fasold H (2003) Intracellular localization of the 90 kDA heat shock protein (HSP90alpha) determined by expression of a EGFP-HSP90alpha-fusion protein in unstressed and heat stressed 3T3 cells. Cell Biol Int 27:47–52CrossRefPubMedGoogle Scholar
  18. Li J, Buchner J (2013) Structure, function and regulation of the hsp90 machinery. Biomed J 36:106–117CrossRefPubMedGoogle Scholar
  19. Li W, Tsen F, Sahu D, Bhatia A, Chen M, Multhoff G, Woodley DT (2013) Extracellular Hsp90 (eHsp90) as the actual target in clinical trials: intentionally or unintentionally. Int Rev Cell Mol Biol 303:203–235CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lilja A, Weeden CE, McArthur K, Nguyen T, Donald A, Wong ZX, Dousha L, Bozinovski S, Vlahos R, Burns CJ, Asselin-Labat ML, Anderson GP (2015) HSP90 inhibition suppresses lipopolysaccharide-induced lung inflammation in vivo. PLoS One 10, e0114975CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ludwig RJ, Zillikens D (2011) Pathogenesis of epidermolysis bullosa acquisita. Dermatol Clin 29:493–501CrossRefPubMedGoogle Scholar
  22. Mazzarella RA, Green M (1987) ERp99, an abundant, conserved glycoprotein of the endoplasmic reticulum, is homologous to the 90-kDa heat shock protein (hsp90) and the 94-kDa glucose regulated protein (GRP94). J Biol Chem 262:8875–8883PubMedGoogle Scholar
  23. McConnell JR, Buckton LK, McAlpine SR (2015) Regulating the master regulator: controlling heat shock factor 1 as a chemotherapy approach. Bioorg Med Chem Lett 25:3409–3414CrossRefPubMedGoogle Scholar
  24. Mollapour M, Neckers L (2012) Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim Biophys Acta 1823:648–655CrossRefPubMedPubMedCentralGoogle Scholar
  25. Monrad S, Kaplan MJ (2007) Dendritic cells and the immunopathogenesis of systemic lupus erythematosus. Immunol Res 37:135–145CrossRefPubMedGoogle Scholar
  26. Murphy P, Sharp A, Shin J, Gavrilyuk V, Dello Russo C, Weinberg G, Sharp FR, Lu A, Heneka MT, Feinstein DL (2002) Suppressive effects of ansamycins on inducible nitric oxide synthase expression and the development of experimental autoimmune encephalomyelitis. J Neurosci Res 67:461–470Google Scholar
  27. Perry D, Sang A, Yin Y, Zheng YY, Morel L (2011) Murine models of systemic lupus erythematosus. J Biomed Biotechnol 2011:271694CrossRefPubMedPubMedCentralGoogle Scholar
  28. Pockley AG (2003) Heat shock proteins as regulators of the immune response. Lancet 362:469–476CrossRefPubMedGoogle Scholar
  29. Poulaki V, Iliaki E, Mitsiades N, Mitsiades CS, Paulus YN, Bula DV, Gragoudas ES, Miller JW (2007) Inhibition of Hsp90 attenuates inflammation in endotoxin-induced uveitis. FASEB J 21:2113–2123CrossRefPubMedGoogle Scholar
  30. Rice JW, Veal JM, Fadden RP, Barabasz AF, Partridge JM, Barta TE, Dubois LG, Huang KH, Mabbett SR, Silinski MA, Steed PM, Hall SE (2008) Small molecule inhibitors of Hsp90 potently affect inflammatory disease pathways and exhibit activity in models of rheumatoid arthritis. Arthritis Rheum 58:3765–3775CrossRefPubMedGoogle Scholar
  31. Rosman Z, Shoenfeld Y, Zandman-Goddard G (2013) Biologic therapy for autoimmune diseases: an update. BMC Med 11:88CrossRefPubMedPubMedCentralGoogle Scholar
  32. Shimp SK 3rd, Chafin CB, Regna NL, Hammond SE, Read MA, Caudell DL, Rylander M, Reilly CM (2012) Heat shock protein 90 inhibition by 17-DMAG lessens disease in the MRL/lpr mouse model of systemic lupus erythematosus. Cell Mol Immunol 9:255–266CrossRefPubMedPubMedCentralGoogle Scholar
  33. Shukla HD, Pitha PM (2012) Role of hsp90 in systemic lupus erythematosus and its clinical relevance. Autoimmune Dis 2012:728605PubMedPubMedCentralGoogle Scholar
  34. Sorger PK, Pelham HR (1987) The glucose-regulated protein grp94 is related to heat shock protein hsp90. J Mol Biol 194:341–344CrossRefPubMedGoogle Scholar
  35. Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2:185–194CrossRefPubMedGoogle Scholar
  36. Stocki P, Dickinson AM (2012) The immunosuppressive activity of heat shock protein 70. Autoimmune Dis 2012:617213PubMedPubMedCentralGoogle Scholar
  37. Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537–549CrossRefPubMedGoogle Scholar
  38. Tukaj S, Kleszczyński K, Vafia K, Groth S, Meyersburg D, Trzonkowski P, Ludwig RJ, Zillikens D, Schmidt E, Fischer TW, Kasperkiewicz M (2013) Aberrant expression and secretion of heat shock protein 90 in patients with bullous pemphigoid. PLoS One 8, e70496CrossRefPubMedPubMedCentralGoogle Scholar
  39. Tukaj S, Zillikens D, Kasperkiewicz M (2014a) Inhibitory effects of heat shock protein 90 blockade on proinflammatory human Th1 and Th17 cell subpopulations. J Inflamm (Lond) 11:10CrossRefGoogle Scholar
  40. Tukaj S, Tiburzy B, Manz R, de Castro MA, Orosz A, Ludwig RJ, Zillikens D, Kasperkiewicz M (2014b) Immunomodulatory effects of heat shock protein 90 inhibition on humoral immune responses. Exp Dermatol 23:585–590CrossRefPubMedGoogle Scholar
  41. Tukaj S, Grüner D, Zillikens D, Kasperkiewicz M (2014c) Hsp90 blockade modulates bullous pemphigoid IgG-induced IL-8 production by keratinocytes. Cell Stress Chaperones 19:887–894CrossRefPubMedPubMedCentralGoogle Scholar
  42. Tukaj S, Hellberg L, Ueck C, Hänsel M, Samavedam U, Zillikens D, Ludwig R, Laskay T, Kasperkiewicz M (2015) Heat shock protein 90 is required for ex vivo neutrophil-driven autoantibody-induced tissue damage in experimental epidermolysis bullosa acquisita. Exp Dermatol 24:567–571CrossRefPubMedGoogle Scholar
  43. van Eden W, van der Zee R, Prakken B (2005) Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 5:318–330CrossRefPubMedGoogle Scholar
  44. Wieten L, Broere F, van der Zee R, Koerkamp EK, Wagenaar J, van Eden W (2007) Cell stress induced HSP are targets of regulatory T cells: a role for HSP inducing compounds as anti-inflammatory immuno-modulators? FEBS Lett 581:3716–3722CrossRefPubMedGoogle Scholar
  45. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772Google Scholar
  46. Yun TJ, Harning EK, Giza K, Rabah D, Li P, Arndt JW, Luchetti D, Biamonte MA, Shi J, Lundgren K, Manning A, Kehry MR (2011) EC144, a synthetic inhibitor of heat shock protein 90, blocks innate and adaptive immune responses in models of inflammation and autoimmunity. J Immunol 186:563–575CrossRefPubMedGoogle Scholar
  47. Zhang H, Zhang L, Yu F, Liu Y, Liang Q, Deng G, Chen G, Liu M, Xiao X (2012) HSF1 is a transcriptional activator of IL-10 gene expression in RAW264.7 macrophages. Inflammation 35:1558–1566CrossRefPubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2016

Authors and Affiliations

  1. 1.Department of Molecular Biology, Faculty of BiologyUniversity of GdańskGdańskPoland

Personalised recommendations