Cell Stress and Chaperones

, Volume 20, Issue 6, pp 893–906 | Cite as

Mediators and mechanisms of heat shock protein 70 based cytoprotection in obstructive nephropathy

  • Luciana Mazzei
  • Neil G. Docherty
  • Walter Manucha
Mini Review


Urinary heat shock protein 70 (Hsp70) is rapidly increased in patients with clinical acute kidney injury, indicating that it constitutes a component of the endogenous stress response to renal injury. Moreover, experimental models have demonstrated that Hsp70 activation is associated with the cytoprotective actions of several drugs following obstruction, including nitric oxide (NO) donors, geranylgeranylacetone, vitamin D, and rosuvastatin. Discrete and synergistic effects of the biological activities of Hsp70 may explain its cytoprotective role in obstructive nephropathy. Basic studies point to a combination of effects including inhibition of apoptosis and inflammation, repair of damaged proteins, prevention of unfolded protein aggregation, targeting of damaged protein for degradation, and cytoskeletal stabilization as primary effectors of Hsp70 action. This review summarizes our understanding of how the biological actions of Hsp70 may affect renal cytoprotection in the context of obstructive injury. The potential of Hsp70 to be of central importance to the mechanism of action of various drugs that modify the genesis of experimental obstructive nephropathy is considered.


Heat shock protein 70 Nitric oxide Obstructive nephropathy Apoptosis Inflammation WT-1 



Our thanks to Claudia Bottero for improving the style and grammar of the text.


The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by grants from the Research and Technology Council of Cuyo University (SECyT), Mendoza, Argentina, and from the National Council of Scientific and Technical Research (CONICET) PIP 2010-2012, both of which were awarded to Walter Manucha. Grant no. PICT 2012-0234 Préstamo BID 2777 OC/AR.

Conflict of interest



  1. Adams JS, Chen H, Chun RF, Nguyen L, Wu S, Ren SY, Barsony J, Gacad MA (2003) Novel regulators of vitamin D action and metabolism: lessons learned at the Los Angeles zoo. J Cell Biochem 88(2):308–314PubMedCrossRefGoogle Scholar
  2. Ahmadzadeh A, Tahmasebi M, Gharibvand MM (2009) Causes and outcome of prenatally diagnosed hydronephrosis. Saudi J Kidney Dis Transpl 20:246–250PubMedGoogle Scholar
  3. Aufricht C (2005) Heat-shock protein 70: molecular supertool? Pediatr Nephrol 20:707–713PubMedCrossRefGoogle Scholar
  4. Beck FX, Neuhofer W, Muller E (2000) Molecular chaperones in the kidney: distribution, putative roles, and regulation. Am J Physiol Ren Physiol 279(2):F203–F215Google Scholar
  5. Becker A, Baum M (2006) Obstructive uropathy. Early Hum Dev 82:15–22PubMedCrossRefGoogle Scholar
  6. Beere HM, Wolf BB, Cain K, Tailor P, Morimoto RI, Cohen GM, Green DR (2000) Heat shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469–475PubMedCrossRefGoogle Scholar
  7. Beissinger M, Buchner J (1998) How chaperones fold proteins. Biol Chem Mar 379(3):245–259Google Scholar
  8. Bocanegra V, Manucha W, Pena MR, Cacciamani V, Valles PG (2010) Caveolin-1 and Hsp70 interaction in microdissected proximal tubules from spontaneously hypertensive rats as an effect of Losartan. J Hypertens 28(1):143–155PubMedCrossRefGoogle Scholar
  9. Borkan SC, Emami A, Schwartz JH (1993) Heat stress protein associated cytoprotection in inner medullary collecting duct cells from rat kidney. Am J Physiol 265:F333–F341PubMedGoogle Scholar
  10. Buckler AJ, Pelletier J, Haber DA, Glaser T, Housman DE (1991) Isolation, characterization, and expression of the murine Wilms’ tumor gene (WT-1) during kidney development. Mol Cell Biol 11:1707–1712PubMedCentralPubMedCrossRefGoogle Scholar
  11. Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451PubMedCrossRefGoogle Scholar
  12. Cachat F, Lange-Sperandio B, Chang AY, Kiley SC, Thornhill BA, Forbes MS, Chevalier RL (2003) Ureteral obstruction in neonatal mice elicits segment-specific tubular cell responses leading to nephron loss. Kidney Int 63:564–575PubMedCrossRefGoogle Scholar
  13. Calabrese V, Cornelius C, Cuzzocrea S, Iavicoli I, Rizzarelli E, Calabrese EJ (2011) Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Mol Asp Med 32(4-6):279–230CrossRefGoogle Scholar
  14. Chen Y, Voegeli TS, Liu PP, Noble EG, Currie RW (2007) Heat shock paradox and a new role of heat shock proteins and their receptors as anti-inflammation targets. Inflamm Allergy Drug Targets 6(2):91–100PubMedCrossRefGoogle Scholar
  15. Cheng H, Cenciarelli C, Shao Z, Vidal M, Parks WP, Pagano M, Cheng-Mayer C (2001) Human T cell leucemia virus type 1 Tax associates with a molecular chaperone complex containing hTid-1 and Hsp70. Curr Biol 11:1771–1775PubMedCrossRefGoogle Scholar
  16. Chevalier RL (1998) Pathophysiology of obstructive nephropathy in the newborn. Semin Nephrol 18:585–593PubMedGoogle Scholar
  17. Chevalier RL, Thornhill BA, Chang AY, Cachat F, Lackey A (2002) Recovery from release of ureteral obstruction in the rat: relationship to nephrogenesis. Kidney Int 61:2033–2043PubMedCrossRefGoogle Scholar
  18. Cormack-Aboud FC, Brinkkoetter PT, Pippin JW, Shankland SJ, Durvasula RV (2009) Rosuvastatin protects against podocyte apoptosis in vitro. Nephrol Dial Transplant 24:404–412PubMedCentralPubMedCrossRefGoogle Scholar
  19. Cummings MC (1996) Increased p53mRNAexpression in liver and kidney apoptosis. Biochim Biophys Acta 1315(2):100–104PubMedCrossRefGoogle Scholar
  20. Dendooven A, Ishola DA Jr, Nguyen TQ, Van der Giezen DM, Kok RJ, Goldschmeding R, Joles JA (2011) Oxidative stress in obstructive nephropathy. Int J Exp Pathol 92:202–210PubMedCentralPubMedCrossRefGoogle Scholar
  21. Dias T, Sairam S, Kumarasiri S (2014) Ultrasound diagnosis of fetal renal abnormalities. Best Pract Res Clin Obstet Gynaecol 28(3):403–415PubMedCrossRefGoogle Scholar
  22. Diez ER, Altamirano LB, García IM, Mazzei L, Prado NJ, Fornes MW, Carrión FD, Zumino AZ, Ferder L, Manucha W (2015) Heart remodeling and ischemia-reperfusion arrhythmias linked to myocardial vitamin d receptors deficiency in obstructive nephropathy are reversed by paricalcitol. J Cardiovasc Pharmacol Ther 20(2):211–220PubMedCrossRefGoogle Scholar
  23. Dmitrieva NI, Burg MB (2005) Hypertonic stress response. Mutat Res 569(1-2):65–74PubMedCrossRefGoogle Scholar
  24. Docherty NG, O’Sullivan OE, Healy DA, Fitzpatrick JM, Watson RW (2006) Evidence that inhibition of tubular cell apoptosis protects against renal damage and development of fibrosis following ureteric obstruction. Am J Physiol Ren Physiol 290:F4–F13CrossRefGoogle Scholar
  25. Duran X, Vilahur G, Badimon L (2009) Exogenous in vivo NO donor treatment preserves p53 levels and protects vascular cells from apoptosis. Atherosclerosis 205:101–106PubMedCrossRefGoogle Scholar
  26. Ekblom P (1989) Developmentally regulated conversion of mesenchyme to epithelium. FASEB J 3:2141–2160PubMedGoogle Scholar
  27. Eleftheriadis T, Lawson BR (2009) Toll-like receptors and kidney diseases. Inflamm Allergy Drug Targets 8(3):191–201PubMedCrossRefGoogle Scholar
  28. Eleftheriadis T, Pissas G, Liakopoulos V, Stefanidis I, Lawson BR (2012) Toll-like receptors and their role in renal pathologies. Inflamm Allergy Drug Targets 11(6):464–477PubMedCrossRefGoogle Scholar
  29. Exner M, Minar E, Wagner O, Schillinger M (2004) The role of heme oxygenase-1 promoter polymorphisms in human disease. Free Radic Biol Med 37(8):1097–1104PubMedCrossRefGoogle Scholar
  30. Fawcett TW, Sylvester SL, Sarge KD, Morimoto RI, Holbrook NJ (1994) Effects of neurohormonal stress and aging on the activation of mammalian heat shock factor 1. J Biol Chem 269:32272–32278PubMedGoogle Scholar
  31. Ferder L, Inserra F, Martinez-Maldonado M (2006) Inflammation and the metabolic syndrome: role of angiotensin II and oxidative stress. Curr Hypertens Rep 8(3):191–198PubMedCrossRefGoogle Scholar
  32. Fink AL (1999) Chaperone-mediated protein folding. Physiol Rev 79(2):425–49PubMedGoogle Scholar
  33. Forbes MS, Thornhill BA, Park MH, Chevalier RL (2007) Lack of endothelial nitric-oxide synthase leads to progressive focal renal injury. Am J Pathol 170(1):87–99PubMedCentralPubMedCrossRefGoogle Scholar
  34. Gabai VL, Meriin AB, Mosser DD, Caron AW, Rits S, Shifrin VI, Sherman MY (1997) Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. J Biol Chem 272(29):18033–18037PubMedCrossRefGoogle Scholar
  35. García IM, Altamirano L, Mazzei L, Fornes M, Molina MN, Ferder L, Manucha W (2012a) Role of mitochondria in paricalcitol-mediated cytoprotection during obstructive nephropathy. Am J Physiol Ren Physiol 302(12):F1595–F1605CrossRefGoogle Scholar
  36. García IM, Mazzei L, Benardón ME, Oliveros L, Cuello-Carrión FD, Gil Lorenzo A, Manucha W, Vallés PG (2012b) Caveolin-1-eNOS/Hsp70 interactions mediate rosuvastatin antifibrotic effects in neonatal obstructive nephropathy. Nitric Oxide 27(2):95–105PubMedCrossRefGoogle Scholar
  37. García IM, Altamirano L, Mazzei L, Fornés M, Cuello-Carrión FD, Ferder L, Manucha W (2014) Vitamin D receptor-modulated Hsp70/AT1 expression may protect the kidneys of SHRs at the structural and functional levels. Cell Stress Chaperones 19(4):479–491PubMedCentralPubMedCrossRefGoogle Scholar
  38. Gething MJ, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45PubMedCrossRefGoogle Scholar
  39. Goloubinoff P, De Los RP (2007) The mechanism of Hsp70 chaperones: (entropic) pulling the models together. Trends Biochem Sci 32:372–380PubMedCrossRefGoogle Scholar
  40. Grande MT, Pérez-Barriocanal F, López-Novoa JM (2010) Role of inflammation in tubulo-interstitial damage associated to obstructive nephropathy. J Inflamm (Lond) 7:19. doi: 10.1186/1476-9255-7-19 CrossRefGoogle Scholar
  41. Harbrecht BG, Billiar TR, Stadler J, Demetris AJ, Ochoa J, Curran RD, Simmons RL (1992) Inhibition of nitric oxide synthesis during endotoxemia promotes intrahepatic thrombosis and an oxygen radical-mediated hepatic injury. J Leukoc Biol 52:390–394PubMedGoogle Scholar
  42. Harbrecht BG, Stadler J, Demetris AJ, Simmons RL, Billiar TR (1994) Nitric oxide and prostaglandins interact to prevent hepatic damage during murine endotoxemia. Am J Physiol 266:G1004–G1010PubMedGoogle Scholar
  43. Harkness TAA, Nargang FE, van der Klei I, Neupert W, Lill R (1994) A crucial role of the mitochondrial protein import receptor MOM19 for the biogenesis of mitochondria. J Cell Biol 124:637–648PubMedCrossRefGoogle Scholar
  44. Harrison EM, Sharpe E, Bellamy CO, McNally SJ, Devey L, Garden OJ, Ross JA, Wigmore SJ (2008) Heat-shock protein 90-binding agents protect renal cells from oxidative stress and reduce kidney ischemia-reperfusion injury. Am J Physiol Ren Physiol 295:F397–F405CrossRefGoogle Scholar
  45. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381(6583):571–579PubMedCrossRefGoogle Scholar
  46. Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16:574–581PubMedCrossRefGoogle Scholar
  47. Hsu H, Xiong J, Goeddel DV (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 81:495–504PubMedCrossRefGoogle Scholar
  48. Ignarro LJ (1990) Biological actions and properties of endothelium derived nitric oxide. Ann Rev Pharmacol Toxicol 30:535–560CrossRefGoogle Scholar
  49. Ishizaka N, Aizawa T, Ohno M, Usui Si S, Mori I, Tang SS, Ingelfinger JR, Kimura S, Nagai R (2002) Regulation and localization of HSP70 and HSP25 in the kidney of rats undergoing long-term administration of angiotensin II. Hypertension 39(1):122–128PubMedCrossRefGoogle Scholar
  50. Ito K, Chen J, Seshan SV, Khodadadian JJ, Gallagher R, El Chaar M, Vaughan ED Jr, Poppas DP, Felsen D (2005) Dietary arginine supplementation attenuates renal damage after relief of unilateral ureteral obstruction in rats. Kidney Int 68:515–528PubMedCrossRefGoogle Scholar
  51. Jäättelä M (1999) Escaping cell death: survival proteins in cancer. Exp Cell Res 248:30–43PubMedCrossRefGoogle Scholar
  52. Jäättelä M, Wissing D (1993) Heat-shock proteins protect cells from monocyte cytotoxicity: possible mechanism of self-protection. J Exp Med 177(1):231–236PubMedCrossRefGoogle Scholar
  53. Jäättelä M, Wissing D, Bauer PA, Li GC (1992) Major heat shock protein Hsp70 protects tumor cells from tumor necrosis factor cytotoxicity. EMBO J 11:3507–3512PubMedCentralPubMedGoogle Scholar
  54. Jacquier-Sarlin MR, Fuller K, Dinh-Xuan AT, Richard MJ, Polla BS (1994) Protective effects of Hsp70 in inflammation. Experientia (Basel) 50:1031–1038CrossRefGoogle Scholar
  55. Johannesen J, Karlsen AE, Pociot F, Roenn SG, Nerup J (2003) Strain dependent rat iNOS promoter activity-correlation to identified WT-1 transcription factor binding site. Autoimmunity 36:167–175PubMedCrossRefGoogle Scholar
  56. Jones Q, Voegeli TS, Li G, Chen Y, Currie RW (2011) Heat-shock proteins protect against ischemia and inflammation through multiple mechanisms. Inflamm Allergy Drug Targets 10:247–259PubMedCrossRefGoogle Scholar
  57. Joshi S, Peck AB, Khan SR (2013) NADPH oxidase as a therapeutic target for oxalate induced injury in kidneys. Oxidative Med Cell Longev 2013:462361CrossRefGoogle Scholar
  58. Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11:579–592PubMedCentralPubMedCrossRefGoogle Scholar
  59. Kang SS, Song JH, Lee MY, Kang YH, Lim SS, Ryu SY, Jung JY (2011) Developmental immunolocalization of heat shock protein 70 (HSP70) in epithelial cell of rat kidney. Histol Histopathol 26(11):1363–73PubMedGoogle Scholar
  60. Kanner J, Harel S, Granit R (1991) Nitric oxide as an antioxidant. Arch Biochem Biophys 289:130–136PubMedCrossRefGoogle Scholar
  61. Kelly KJ (2005) Heat-shock (stress response) proteins and renal ischemia/reperfusion injury. Contrib Nephrol Basel Karger 148:86–106CrossRefGoogle Scholar
  62. Kim JY, Yenari MA (2013) The immune modulating properties of the heat shock proteins after brain injury. Anat Cell Biol 46(1):1–7PubMedCentralPubMedCrossRefGoogle Scholar
  63. Kim YM, de Vera ME, Watkins SC, Billiar TR (1997) Nitric oxide protects cultured rat hepatocytes from tumor necrosis factor-alpha-induced apoptosis by inducing heat shock protein 70 expression. J Biol Chem 272:1402–1411PubMedCrossRefGoogle Scholar
  64. Kim YM, Bombeck CA, Billiar TR (1999) Nitric oxide as a bifunctional regulator of apoptosis. Circ Res 84:253–256PubMedCrossRefGoogle Scholar
  65. Kim YO, Li C, Sun BK, Kim JS, Lim SW, Choi BS, Kim YS, Kim J, Bang BK, Yang CW (2005) Preconditioning with 1,25-dihydroxyvitamin D3 protects against subsequent ischemia reperfusion injury in the rat kidney. Nephron Exp Nephrol 100(2):e85–94PubMedCrossRefGoogle Scholar
  66. Kim M, Park SW, Chen SW, Gerthoffer WT, D’Agati VD, Lee HT (2010) Selective renal overexpression of human heat-shock protein 27 reduces renal ischemia-reperfusion injury in mice. Am J Physiol Ren Physiol 299:F347–F358CrossRefGoogle Scholar
  67. Kim MG, Jung Cho E, Won Lee J, Sook Ko Y, Young Lee H, Jo SK, Cho WY, Kim HK (2014) The heat-shock protein-70- induced renoprotective effect is partially mediated by CD4+ CD25+ Foxp3 + regulatory T cells in ischemia/reperfusion-induced acute kidney injury. Kidney Int 85(1):62–71PubMedCrossRefGoogle Scholar
  68. Klahr S (2001) Urinary tract obstruction. Semin Nephrol 21:133–145PubMedCrossRefGoogle Scholar
  69. Kolpakov V, Gordon D, Kulik TJ (1995) Nitric oxide-generating compounds inhibit total protein and collagen synthesis in cultured vascular smooth muscle cells. Circ Res 76:305–309PubMedCrossRefGoogle Scholar
  70. Kumar Y, Tatu U (2003) Stress protein flux during recovery from simulated ischemia: induced heat shock protein 70 confers cytoprotection by suppressing JNK activation and inhibiting apoptotic cell death. Proteomics 3:513–526PubMedCrossRefGoogle Scholar
  71. Lane DP, Midgley C, Hupp T (1993) Tumour suppressor genes and molecular chaperones. Philos Trans R Soc Lond B Biol Sci 339(1289):369–372, discussion 372-383 PubMedCrossRefGoogle Scholar
  72. Lanneau D, Brunet M, Frisan E, Solary E, Fontenay M, Garrido C (2008) Heat-shock proteins: essential proteins for apoptosis regulation. J Cell Mol Med 12:743–761PubMedCentralPubMedCrossRefGoogle Scholar
  73. Lebherz-Eichinger D, Ankersmit HJ, Hacker S, Hetz H, Kimberger O, Schmidt EM, Reiter T, Hörl WH, Haas M, Krenn CG, Roth GA (2012) HSP27 and HSP70 serum and urine levels in patients suffering from chronic kidney disease. Clin Chim Acta 413(1-2):282–286PubMedCrossRefGoogle Scholar
  74. Li J, Billiar TR, Talanian RV, Kim YM (1997) Nitric oxide reversibly inhibits seven members of the caspasa family via S-nitrosylation. Biochem Biophys Res Commun 240:419–424PubMedCrossRefGoogle Scholar
  75. Li F, Mao HP, Ruchalski KL, Wang YH, Choy W, Schwartz JH, Borkan SC (2002) Heat stress prevents mitochondrial injury in ATP-depleted renal epithelial cells. Am J Physiol Cell Physiol 283:917–926CrossRefGoogle Scholar
  76. Liapis H (2003) Biology of congenital obstructive nephropathy. Nephron Exp Nephrol 93:87–91CrossRefGoogle Scholar
  77. Luders J, Demand J, Schonfelder S, Frien M, Zimmerman R, Hohfeld J (1998) Cofactorinduced modulation of the functional specificity of the molecular chaperone Hsc70. Biol Chem 379(10):1217–1226PubMedCrossRefGoogle Scholar
  78. Lutz W, Kohno K, Kumar R (2001) The role of heat shock protein 70 in vitamin D receptor function. Biochem Biophys Res Commun 282(5):1211–1219PubMedCrossRefGoogle Scholar
  79. Maheswaran S, Englert C, Bennett P, Heinrich G, Haber DA (1995) The WT1 gene product stabilizes p53 and inhibits p53-mediated apoptosis. Genes Dev 9:2143–2156PubMedCrossRefGoogle Scholar
  80. Maheswaran S, Englert C, Zheng G, Lee SB, Wong J, Harkin DP, Bean J, Ezzell R, Garvin AJ, McCluskey RT, DeCaprio JA, Haber DA (1998) Inhibition of cellular proliferation by the Wilms tumor suppressor WT-1 requires association with the inducible chaperone Hsp70. Genes Dev 12:1108–1120PubMedCentralPubMedCrossRefGoogle Scholar
  81. Mannick JB, Miao XQ, Stamler JS (1997) Nitric oxide inhibits Fas-induced apoptosis. J Biol Chem 272:24125–24128PubMedCrossRefGoogle Scholar
  82. Manucha W (2007) Biochemical-molecular markers in unilateral ureteral obstruction. Biocell 31:1–12PubMedGoogle Scholar
  83. Manucha W (2014) Mitochondria and oxidative stress participation in renal inflammatory process. Medicina (B Aires) 74(3):254–258Google Scholar
  84. Manucha W, Vallés P (2008a) Hsp70/nitric oxide relationship in apoptotic modulation during obstructive nephropathy. Cell Stress Chaperones 13(4):413–420PubMedCentralPubMedCrossRefGoogle Scholar
  85. Manucha W, Vallés PG (2008b) Cytoprotective role of nitric oxide associated with Hsp70 expression in neonatal obstructive nephropathy. Nitric Oxide 18(3):204–215PubMedCrossRefGoogle Scholar
  86. Manucha W, Oliveros L, Carrizo L, Seltzer A, Vallés P (2004) Losartan modulation on NOS isoforms and COX-2 expression in early renal fibrogenesis in unilateral obstruction. Kidney Int 65(6):2091–2107PubMedCrossRefGoogle Scholar
  87. Manucha W, Carrizo L, Ruete C, Molina H, Vallés P (2005) Angiotensin II type I antagonist on oxidative stress and heat shock protein 70 (HSP-70) expression in obstructive nephropathy. Cell Mol Biol (Noisy-le-grand) 51:547–555Google Scholar
  88. Manucha W, Carrizo L, Ruete C, Vallés PG (2007) Apoptosis induction is associated with decreased NHE1 expression in neonatal unilateral ureteric obstruction. BJU Int 100:191–198PubMedCrossRefGoogle Scholar
  89. Manucha W, Kurbán F, Mazzei L, Benardón ME, Bocanegra V, Tosi MR, Vallés P (2011) eNOS / Hsp70 interaction on rosuvastatin cytoprotective effect in neonatal obstructive nephropathy. Eur J Pharmacol 650(2-3):487–495PubMedCrossRefGoogle Scholar
  90. Manucha W, Ritchie B, Ferder L (2015) Hypertension and insulin resistance: implications of mitochondrial dysfunction. Curr Hypertens Rep 17(1):504. doi: 10.1007/s11906-014-0504-2 PubMedCrossRefGoogle Scholar
  91. Mao H, Li Z, Zhou Y, Li Z, Zhuang S, An X, Zhang B, Chen W, Nie J, Wang Z, Borkan SC, Wang Y, Yu X (2008) HSP72 attenuates renal tubular cell apoptosis and interstitial fibrosis in obstructive nephropathy. Am J Physiol Ren Physiol 295(1):F202–F214CrossRefGoogle Scholar
  92. Marcet-Palacios M, Davoine F, Adamko DJ, Moqbel R, Befus AD (2007) Human lymphocytes express the transcriptional regulator, Wilms tumor 1: the role of WT-1 in mediating nitric oxide-dependent repression of lymphocyte proliferation. Biochem Biophys Res Commun 363:283–287PubMedCrossRefGoogle Scholar
  93. Mazzei L, Manucha W (2013) Wt-1 expression linked to nitric oxide availability during neonatal obstructive nephropathy. Adv Uro. doi: 10.1155/2013/401750
  94. Mazzei L, Garcia IM, Manucha W (2010a) Moduladores de fibrosis y apoptosis asociados a la disponibilidad de ON. Efecto de rosuvastatina en nefropatía obstructiva neonatal. Bioanalisis 34(6):20–26Google Scholar
  95. Mazzei L, García IM, Cacciamani V, Benardón ME, Manucha W (2010b) WT-1 mRNA expression is modulated by nitric oxide availability and Hsp70 interaction after neonatal unilateral ureteral obstruction. Biocell 34(3):121–32PubMedGoogle Scholar
  96. Mazzei LJ, García IM, Altamirano L, Docherty NG, Manucha W (2012) Rosuvastatin preserves renal structure following unilateral ureteric obstruction in the neonatal rat. Am J Nephrol 35(2):103–13PubMedCrossRefGoogle Scholar
  97. Messmer UK, Brune B (1996) Nitric oxide-induced apoptosis: p53-dependent and p53-independent signaling pathways. Biochem J 319:299–305PubMedCentralPubMedCrossRefGoogle Scholar
  98. Miyajima A, Chen J, Lawrence C, Ledbetter S, Soslow RA, Stern J, Jha S, Pigato J, Lemer ML, Poppas DP, Vaughan ED, Felsen D (2000) Antibody to transforming growth factor-β ameliorates tubular apoptosis in unilateral ureteral obstruction. Kidney Int 58(6):2301–2313PubMedCrossRefGoogle Scholar
  99. Mizuguchi Y, Miyajima A, Kosaka T, Asano T, Hayakawa M (2004) Atorvastatin ameliorates renal tissue damage in unilateral ureteral obstruction. J Urol 172:2456–2459PubMedCrossRefGoogle Scholar
  100. Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–3896PubMedCrossRefGoogle Scholar
  101. Morrissey JJ, Klahr S (1999) Effect of AT2 receptor blockade on the pathogenesis of renal fibrosis. Am J Physiol 276(1):F39–F45PubMedGoogle Scholar
  102. Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B (1997) Role of the human heat shock protein Hsp70 in protection against stress-induced apoptosis. Mol Cell Biol 17:5317–5327PubMedCentralPubMedCrossRefGoogle Scholar
  103. Nuñez G, Clarke MF (1994) The Bcl-2 family of proteins: regulators of cell death and survival. Trends Cell Biol 4:399–403PubMedCrossRefGoogle Scholar
  104. O’Neill S, Hughes J (2014) Heat-shock protein-70 and regulatory T-cell-mediated protection from ischemic injury. Kidney Int 85:5–7PubMedCrossRefGoogle Scholar
  105. O’Neill S, Ross JA, Wigmore SJ, Harrison EM (2012) The role of heat-shock protein 90 in modulating ischemia-reperfusion injury in the kidney. Expert Opin Investig Drugs 21:1535–1548PubMedCrossRefGoogle Scholar
  106. O'Neill S, Harrison EM, Ross JA, Wigmore SJ, Hughes J (2014) Heat-shock proteins and acute ischaemic kidney injury. Nephron Exp Nephrol 126:167–174PubMedCrossRefGoogle Scholar
  107. Power RE, Doyle BT, Higgins D, Brady HR, Fitzpatrick JM, Watson RW (2004) Mechanical deformation induced apoptosis in human proximal renal tubular epithelial cells is caspase dependent. J Urol 171:457–461PubMedCrossRefGoogle Scholar
  108. Pritchard-Jones K, Fleming S, Davidson D, Bickmore W, Porteous D, Gosden C, Bard J, Buckler A, Pelletier J, Housman D (1990) The candidate Wilms tumor gene is involved in genitourinary development. Nature 346:194–197PubMedCrossRefGoogle Scholar
  109. Rinaldi Tosi ME, Bocanegra V, Manucha W, Gil Lorenzo A, Valles PG (2011) The Nrf2-Keap1 cellular defense pathway and heat shock protein 70 (Hsp70) responses. Role in protection against oxidative stress in early neonatal unilateral ureteral obstruction (UUO). Cell Stress Chaperones 16(1):57–68PubMedCentralPubMedCrossRefGoogle Scholar
  110. Ruchalski K, Mao H, Singh SK, Wang Y, Mosser DD, Li F, Schwartz JH, Borkan SC (2003) HSP72 inhibits apoptosis-inducing factor release in ATP-depleted renal epithelial cells. Am J Physiol Cell Physiol 285:1483–1493CrossRefGoogle Scholar
  111. Ruiz-Ortega M, Ruperez M, Esteban V, Rodriguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J (2006) Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol Dial Transplant 21(1):16–20PubMedCrossRefGoogle Scholar
  112. Rusai K, Banki NF, Prokai A, Podracka L, Szebeni B, Tulassay T, Reusz GS, Sallay P, Körmendy R, Szabo AJ, Fekete A (2010) Heat shock protein polymorphism predisposes to urinary tract malformations and renal transplantation in children. Transplant Proc 42(6):2309–2311PubMedCrossRefGoogle Scholar
  113. Saikumar P, Dong Z, Patel Y, Hall K, Hopfer U, Weinberg JM, Venkatachalam MA (1998) Role of hypoxia-induced Bax translocation and cytochrome c release in reoxygenation injury. Oncogene 17:3401–3415PubMedCrossRefGoogle Scholar
  114. Sanz AB, Sanchez-Nino MD, Ramos AM, Moreno JA, Santamaria B, Ruiz-Ortega M, Egido J, Ortiz A (2010) NF-kappaB in renal inflammation. J Am Soc Nephrol 21(8):1254–1262PubMedCrossRefGoogle Scholar
  115. Scharnhorst V, Dekker P, van der Eb AJ, Jochemsen AG (2000) Physical interaction between Wilms tumor 1 and p53 proteins modulates their functions. J Biol Chem 275(14):10202–10211PubMedCrossRefGoogle Scholar
  116. Singh IS, Hasday JD (2013) Fever, hyperthermia and the heat shock response. Int J Hyperth 29(5):423–435CrossRefGoogle Scholar
  117. Sonoda H, Prachasilchai W, Kondo H, Yokota-Ikeda N, Oshikawa S, Ito K, Ikeda M (2010) The protective effect of radicicol against renal ischemia- reperfusion injury in mice. J Pharmacol Sci 112:242–246PubMedCrossRefGoogle Scholar
  118. Sorger PK (1991) Heat shock factor and the heat shock response. Cell 65:363–366PubMedCrossRefGoogle Scholar
  119. Strasser A, Anderson RL (1995) Bcl-2 and thermotolerance cooperate in cell survival. Cell Growth Differ 6:799–805PubMedGoogle Scholar
  120. Sun Y, Zhang Y, Zhao D, Ding G, Huang S, Zhang A, Jia Z (2014) Rotenone remarkably attenuates oxidative stress, inflammation, and fibrosis in chronic obstructive uropathy. Mediat Inflamm. doi: 10.1155/2014/670106 Google Scholar
  121. Swamy N, Mohr SC, Xu W, Ray R (1999) Vitamin D receptor interacts with DnaK/heat shock protein 70: identification of DnaK interaction site on vitamin D receptor. Arch Biochem Biophys 363(2):219–26PubMedCrossRefGoogle Scholar
  122. Takenaka IM, Leung SM, McAndrew SJ, Brown JP, Hightower LE (1995) Hsc70-binding peptides selected from a phage display peptide library that resemble organellar targeting sequences. J Biol Chem 270(34):19839–19844PubMedCrossRefGoogle Scholar
  123. Tian S, Ding G, Jia R, Chu G (2006) Tubulointerstitial macrophage accumulation is regulated by sequentially expressed osteopontin and macrophage colony-stimulating factor: implication for the role of atorvastatin. Mediat Inflamm 2:12919Google Scholar
  124. Topcu SO, Celik S, Erturhan S, Erbagci A, Yagci F, Ucak R (2008) Verapamil prevents the apoptotic and hemodynamic changes in response to unilateral ureteral obstruction. Int J Urol 15(4):350–355PubMedCrossRefGoogle Scholar
  125. Trnka P, Hiatt MJ, Ivanova L, Tarantal AF, Matsell DG (2010) Phenotypic transition of the collecting duct epithelium in congenital urinary tract obstruction. J Biomed Biotechnol 696034Google Scholar
  126. Tsujimoto Y (1989) Stress-resistance conferred by high level of Bcl-2 protein in human B lymphoblastoid cell. Oncogene 4:1331–1336PubMedGoogle Scholar
  127. Uchiyama T, Atsuta H, Utsugi T, Oguri M, Hasegawa A, Nakamura T, Nakai A, Nakata M, Maruyama I, Tomura H, Okajima F, Tomono S, Kawazu S, Nagai R, Kurabayashi M (2007) HSF1 and constitutively active HSF1 improve vascular endothelial function (heat shock proteins improve vascular endothelial function. Atherosclerosis 190:321–329PubMedCrossRefGoogle Scholar
  128. Valles PG, Melechuck S, Gonzalez A, Manucha W, Bocanegra V, Valles R (2012) Toll-like receptor 4 expression on circulating leucocytes in hemolytic uremic syndrome. Pediatr Nephrol 27(3):407–415PubMedCrossRefGoogle Scholar
  129. Van de Water B, de Graauw M, Le Dévédec S, Alderliesten M (2006) Cellular stress responses and molecular mechanisms of nephrotoxicity. Toxicol Lett 162(1):83–93PubMedCrossRefGoogle Scholar
  130. Vasil’eva TV, Michurina TV, Radionova IV, Kuzin BA, Enikolopov GN, Khrushchov NG (1997) NO synthetase in the cells of different tissues and organs of the mouse. Ontogenez 28:458–462PubMedGoogle Scholar
  131. Vieira JM Jr, Mantovani E, Rodrigues LT, Dellê H, Noronha IL, Fujihara CK, Zatz R (2005) Simvastatin attenuates renal inflammation, tubular transdifferentiation and interstitial fibrosis in rats with unilateral ureteral obstruction. Nephrol Dial Transplant 20:1582–1591PubMedCrossRefGoogle Scholar
  132. Voegeli TS, Wintink AJ, Chen Y, Currie RW (2008) Heat shock proteins 27 and 70 regulating angiotensin II-induced NF-kappaB: a possible connection to blood pressure control? Appl Physiol Nutr Metab 33(5):1042–1049PubMedCrossRefGoogle Scholar
  133. Wang Y, Knowiton AA, Christensen TG (1999) Prior heat stress inhibits apoptosis in adenosine triphosphate-depleted renal tubular cells. Kidney Int 55:2224–2235PubMedCrossRefGoogle Scholar
  134. Wang Z, Gall JM, Bonegio RG, Havasi A, Hunt CR, Sherman MY, Schwartz JH, Borkan SC (2011) Induction of heat-shock protein 70 inhibits ischemic renal injury. Kidney Int 79:861–870PubMedCrossRefGoogle Scholar
  135. Wang Y, Wang B, Du F, Su X, Sun G, Zhou G, Bian X, Liu N (2015a) Epigallocatechin-3-gallate attenuates unilateral ureteral obstruction-induced renal interstitial fibrosis in mice. J Histochem Cytochem 63(4):270–279, A PubMedCrossRefGoogle Scholar
  136. Wang Y, Wang B, Du F, Su X, Sun G, Zhou G, Bian X, Liu N (2015b) Epigallocatechin-3-Gallate Attenuates Oxidative Stress and Inflammation in Obstructive Nephropathy via NF-κB and Nrf2/HO-1 Signalling Pathway Regulation. Basic Clin Pharmacol Toxicol. doi: 10.1111/bcpt.12383. B Google Scholar
  137. Xu Q, Hu Y, Kleindienst R, Wick G (1997) Nitric oxide induces heat shock protein 70 expression in vascular smooth muscle cells via activation of heat shock factor 1. J Clin Invest 100:1089–1097PubMedCentralPubMedCrossRefGoogle Scholar
  138. Yan CG, Zhu DF, Wang F (2007) Study on the expressions and roles of renal heat shock protein 72 and Toll-like receptor 4 in hepatorenal syndrome in rat. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 19(12):731–734PubMedGoogle Scholar
  139. Yang C, Nilsson L, Cheema MU, Wang Y, Frøkiær J, Gao S, Kjems J, Nørregaard R (2015) Chitosan/siRNA nanoparticles targeting cyclooxygenase type 2 attenuate unilateral ureteral obstruction-induced kidney injury in mice. Theranostics 5(2):110–123PubMedCentralPubMedCrossRefGoogle Scholar
  140. Yoo KH, Thornhill BA, Forbes MS, Chevalier RL (2010) Inducible nitric oxide synthase modulates hydronephrosis following partial or complete unilateral ureteral obstruction in the neonatal mouse. Am J Physiol Ren Physiol 298(1):F62–F71CrossRefGoogle Scholar
  141. Zhang PL, Lun M, Schworer CM, Blasick TM, Masker KK, Jones JB, Carey DJ (2008) Heat-shock protein expression is highly sensitive to ischemia-reperfusion injury in rat kidneys. Ann Clin Lab Sci 38:57–64PubMedGoogle Scholar
  142. Zhang Y, Kong J, Deb DK, Chang A, Li YC (2010) Vitamin D receptor attenuates renal fibrosis by suppressing the renin-angiotensin system. J Am Soc Nephrol 21:966–973PubMedCentralPubMedCrossRefGoogle Scholar
  143. Zhang Y, Ahn YH, Benjamin IJ, Honda T, Hicks RJ, Calabrese V, Cole PA, Dinkova-Kostova AT (2011) HSF1-dependent upregulation of Hsp70 by sulfhydryl-reactive inducers of the Keap1/Nrf2/ARE pathway. Chem Biol 18(11):1355–1361PubMedCentralPubMedCrossRefGoogle Scholar
  144. Zhou MS, Jaimes EA, Raij L (2004) Atorvastatin prevents end-organ injury in salt-sensitive hypertension role of eNOS and oxidant stress. Hypertension 44:186–190PubMedCrossRefGoogle Scholar
  145. Zhou MS, Hernandez Schuman I, Jaimes EA, Raij L (2008) Renoprotection by statins is linked to a decrease in renal oxidative stress, TGF-β, and fibronectin with concomitant increase in nitric oxide bioavailability. Am J Physiol Ren Physiol 295:F53–F59CrossRefGoogle Scholar
  146. Zhou P, Yu JF, Zhao CG, Sui FX, Teng X, Wu YB (2013) Therapeutic potential of EGCG on acute renal damage in a rat model of obstructive nephropathy. Mol Med Rep 7(4):1096–1102PubMedGoogle Scholar
  147. Zuo Y, Ma J, Gu Y, Yang H, Lin S (2002) The renal protective effect of selective cyclooxygenase-2 inhibitor on obstructive nephropathy. Zhonghua Nei Ke Za Zhi 41(12):825–828PubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2015

Authors and Affiliations

  • Luciana Mazzei
    • 1
    • 2
  • Neil G. Docherty
    • 3
  • Walter Manucha
    • 1
    • 2
  1. 1.Área de Farmacología, Departamento de Patología, Facultad de Ciencias MédicasUniversidad Nacional de CuyoMendozaArgentina
  2. 2.IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina)Buenos AiresArgentina
  3. 3.Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical ScienceUniversity College DublinDublinIreland

Personalised recommendations