Cell Stress and Chaperones

, Volume 20, Issue 1, pp 3–13 | Cite as

Effects of allopurinol on exercise-induced muscle damage: new therapeutic approaches?

  • F. Sanchis-Gomar
  • H. Pareja-Galeano
  • C. Perez-Quilis
  • A. Santos-Lozano
  • C. Fiuza-Luces
  • N. Garatachea
  • G. Lippi
  • A. Lucia
Mini Review


Intensive muscular activity can trigger oxidative stress, and free radicals may hence be generated by working skeletal muscle. The role of the enzyme xanthine oxidase as a generating source of free radicals is well documented and therefore is involved in the skeletal muscle damage as well as in the potential transient cardiovascular damage induced by high-intensity physical exercise. Allopurinol is a purine hypoxanthine-based structural analog and a well-known inhibitor of xanthine oxidase. The administration of the xanthine oxidase inhibitor allopurinol may hence be regarded as promising, safe, and an economic strategy to decrease transient skeletal muscle damage (as well as heart damage, when occurring) in top-level athletes when administered before a competition or a particularly high-intensity training session. Although continuous administration of allopurinol in high-level athletes is not recommended due to its possible role in hampering training-induced adaptations, the drug might be useful in non-athletes. Exertional rhabdomyolysis is the most common form of rhabdomyolysis and affects individuals participating in a type of intense exercise to which they are not accustomed. This condition can cause exercise-related myoglobinuria, thus increasing the risk of acute renal failure and is also associated with sickle cell trait. In this manuscript, we have reviewed the recent evidence about the effects of allopurinol on exercise-induced muscle damage. More research is needed to determine whether allopurinol may be useful for preventing not only exertional rhabdomyolysis and acute renal damage but also skeletal muscle wasting in critical illness as well as in immobilized, bedridden, sarcopenic or cachectic patients.


Xanthine oxidase Free radicals Muscle injury Rhabdomyolysis Sarcopenia Cachexy 





Alanine aminotransferase


Aspartate aminotransferase


Adenosine triphosphate


Creatine kinase


Creatine kinase, myocardic isoenzyme




C-reactive protein


Free radicals


Growth differentiation factor 15


Gamma glutamyltransferase


Heat-shock protein


Heme oxygenase


Highly sensitive troponin T




Inositol monophosphate


Lactate dehydrogenase




Midregional part of proadrenomedullin




Nicotinamide adenine dinucleotide


Oxidative stress




Placental growth factor


Reactive oxygen species


Soluble urokinase plasminogen activator receptor


Vascular endothelial growth factor receptor-1


Vascular endothelial growth factor


Xanthine dehydrogenase


Xanthine oxidase


Xanthine oxide-reductase


  1. Aizer A, Gaziano JM, Cook NR, Manson JE, Buring JE, Albert CM (2009) Relation of vigorous exercise to risk of atrial fibrillation. Am J Cardiol 103:1572–1577PubMedCentralPubMedGoogle Scholar
  2. Anker SD, Doehner W, Rauchhaus M, Sharma R, Francis D, Knosalla C, Davos CH, Cicoira M, Shamim W, Kemp M, Segal R, Osterziel KJ, Leyva F, Hetzer R, Ponikowski P, Coats AJ (2003) Uric acid and survival in chronic heart failure: validation and application in metabolic, functional, and hemodynamic staging. Circulation 107:1991–1997PubMedGoogle Scholar
  3. Arabadjis PG, Tullson PC, Terjung RL (1993) Purine nucleoside formation in rat skeletal muscle fiber types. Am J Physiol 264:C1246–1251PubMedGoogle Scholar
  4. Armstrong RB, Ogilvie RW, Schwane JA (1983) Eccentric exercise-induced injury to rat skeletal muscle. J Appl Physiol 54:80–93PubMedGoogle Scholar
  5. Bailey AP, Shparago M, Gu JW (2006) Exercise increases soluble vascular endothelial growth factor receptor-1 (sFlt-1) in circulation of healthy volunteers. Med Sci Monit 12:CR45–50PubMedGoogle Scholar
  6. Banfi G, Colombini A, Lombardi G, Lubkowska A (2012) Metabolic markers in sports medicine. Adv Clin Chem 56:1–54PubMedGoogle Scholar
  7. Barclay JK, Hansel M (1991) Free radicals may contribute to oxidative skeletal muscle fatigue. Can J Physiol Pharmacol 69:279–284PubMedGoogle Scholar
  8. Benito B, Gay-Jordi G, Serrano-Mollar A, Guasch E, Shi Y, Tardif JC, Brugada J, Nattel S, Mont L (2011) Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training. Circulation 123:13–22PubMedGoogle Scholar
  9. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 297:842–857PubMedGoogle Scholar
  10. Borras C, Gambini J, Gomez-Cabrera MC, Sastre J, Pallardo FV, Mann GE, Viña J (2006) Genistein, a soy isoflavone, up-regulates expression of antioxidant genes: involvement of estrogen receptors, ERK1/2, and NFkappaB. FASEB J 20:2136–2138PubMedGoogle Scholar
  11. Brancaccio P, Maffulli N, Limongelli FM (2007) Creatine kinase monitoring in sport medicine. Br Med Bull 81–82:209–230PubMedGoogle Scholar
  12. Brancaccio P, Lippi G, Maffulli N (2010) Biochemical markers of muscular damage. Clin Chem Lab Med 48:757–767PubMedGoogle Scholar
  13. Broberg S, Sahlin K (1989) Adenine nucleotide degradation in human skeletal muscle during prolonged exercise. J Appl Physiol (1985) 67:116–122Google Scholar
  14. Burge J, Knechtle B, Knechtle P, Gnadinger M, Rust CA, Rosemann T (2011) Maintained serum sodium in male ultra-marathoners–the role of fluid intake, vasopressin, and aldosterone in fluid and electrolyte regulation. Horm Metab Res 43:646–652PubMedGoogle Scholar
  15. Cleary MA, Sadowski KA, Lee SY, Miller GL, Nichols AW (2011) Exertional rhabdomyolysis in an adolescent athlete during preseason conditioning: a perfect storm. J Strength Cond Res 25:3506–3513PubMedGoogle Scholar
  16. Commoner B, Townsend J, Pake GE (1954) Free radicals in biological materials. Nature 174:689–691PubMedGoogle Scholar
  17. Davies KJ, Quintanilha AT, Brooks GA, Packer L (1982) Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 107:1198–1205PubMedGoogle Scholar
  18. Derbre F, Ferrando B, Gomez-Cabrera MC, Sanchis-Gomar F, Martinez-Bello VE, Olaso-Gonzalez G, Diaz A, Gratas-Delamarche A, Cerda M, Viña J (2012) Inhibition of xanthine oxidase by allopurinol prevents skeletal muscle atrophy: role of p38 MAPKinase and E3 ubiquitin ligases. PLoS ONE 7:e46668PubMedCentralPubMedGoogle Scholar
  19. Eijsvogels TM, Shave R, van Dijk A, Hopman MT, Thijssen DH (2011) Exercise-induced cardiac troponin release: real-life clinical confusion. Curr Med Chem 18:3457–3461PubMedGoogle Scholar
  20. Elion GB, Kovensky A, Hitchings GH (1966) Metabolic studies of allopurinol, an inhibitor of xanthine oxidase. Biochem Pharmacol 15:863–880PubMedGoogle Scholar
  21. Elsayed EF, Reilly RF (2010) Rhabdomyolysis: a review, with emphasis on the pediatric population. Pediatr Nephrol 25:7–18PubMedGoogle Scholar
  22. Eugen-Olsen J, Andersen O, Linneberg A, Ladelund S, Hansen TW, Langkilde A, Petersen J, Pielak T, Moller LN, Jeppesen J, Lyngbaek S, Fenger M, Olsen MH, Hildebrandt PR, Borch-Johnsen K, Jorgensen T, Haugaard SB (2010) Circulating soluble urokinase plasminogen activator receptor predicts cancer, cardiovascular disease, diabetes and mortality in the general population. J Intern Med 268:296–308PubMedGoogle Scholar
  23. Garatachea N, Santos-Lozano A, Sanchis-Gomar F, Fiuza-Luces C, Pareja-Galeano H, Emanuele E, Lucia A (2014) Elite athletes live longer than the general population: a meta-analysis. Mayo Clin Proc. doi: 10.1016/j.mayocp.2014.06.004
  24. George J, Struthers AD (2009) Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag 5:265–272PubMedCentralPubMedGoogle Scholar
  25. Gey GO, Cooper KH, Bottenberg RA (1970) Effect of ascorbic acid on endurance performance and athletic injury. JAMA 211:105, PubMed PMID: 5466884PubMedGoogle Scholar
  26. Giza E, Micheli LJ (2005) Soccer injuries. Med Sport Sci 49:140–169PubMedGoogle Scholar
  27. Gobbi P, Lo Presti MS, Fernández AR, Enders JE, Fretes R, Gea S, Paglini-Oliva PA, Rivarola HW (2007) Allopurinol is effective to modify the evolution of Trypanosoma cruzi infection in mice. Parasitol Res 101:1459–1462PubMedGoogle Scholar
  28. Gomez-Cabrera MC, Pallardo FV, Sastre J, Viña J, Garcia-del-Moral L (2003) Allopurinol and markers of muscle damage among participants in the Tour de France. JAMA 289:2503–2504PubMedGoogle Scholar
  29. Gomez-Cabrera MC, Borras C, Pallardo FV, Sastre J, Ji LL, Viña J (2005) Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol 567:113–120PubMedCentralPubMedGoogle Scholar
  30. Gomez-Cabrera MC, Martinez A, Santangelo G, Pallardo FV, Sastre J, Viña J (2006) Oxidative stress in marathon runners: interest of antioxidant supplementation. Br J Nutr 96(Suppl 1):S31–33PubMedGoogle Scholar
  31. Gomez-Cabrera MC, Domenech E, Romagnoli M, Arduini A, Borras C, Pallardo FV, Sastre J, Viña J (2008) Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr 87:142–149PubMedGoogle Scholar
  32. Granger DN, Perry MA, Kvietys PR, Taylor AE (1981) Interstitium-to-blood movement of macromolecules in the absorbing small intestine. Am J Physiol 241:G31–36PubMedGoogle Scholar
  33. Harris CM, Sanders SA, Massey V (1999) Role of the flavin midpoint potential and NAD binding in determining NAD versus oxygen reactivity of xanthine oxidoreductase. J Biol Chem 274:4561–4569PubMedGoogle Scholar
  34. Hellsten Y (1994) Xanthine dehydrogenase and purine metabolism in man. With special reference to exercise. Acta Physiol Scand Suppl 621:1–73PubMedGoogle Scholar
  35. Hellsten Y, Frandsen U, Orthenblad N, Sjodin B, Richter EA (1997) Xanthine oxidase in human skeletal muscle following eccentric exercise: a role in inflammation. J Physiol 498(Pt 1):239–248PubMedCentralPubMedGoogle Scholar
  36. Hellsten-Westing Y (1993) Immunohistochemical localization of xanthine oxidase in human cardiac and skeletal muscle. Histochemistry 100:215–222PubMedGoogle Scholar
  37. Hellsten-Westing Y, Sollevi A, Sjodin B (1991) Plasma accumulation of hypoxanthine, uric acid and creatine kinase following exhausting runs of differing durations in man. Eur J Appl Physiol Occup Physiol 62:380–384PubMedGoogle Scholar
  38. Hellsten-Westing Y, Kaijser L, Ekblom B, Sjodin B (1994) Exchange of purines in human liver and skeletal muscle with short-term exhaustive exercise. Am J Physiol 266:R81–86PubMedGoogle Scholar
  39. Heunks LM, Viña J, van Herwaarden CL, Folgering HT, Gimeno A, Dekhuijzen PN (1999) Xanthine oxidase is involved in exercise-induced oxidative stress in chronic obstructive pulmonary disease. Am J Physiol 277:R1697–1704PubMedGoogle Scholar
  40. Hew-Butler T, Hoffman MD, Stuempfle KJ, Rogers IR, Morgenthaler NG, Verbalis JG (2011) Changes in copeptin and bioactive vasopressin in runners with and without hyponatremia. Clin J Sport Med 21:211–217PubMedCentralPubMedGoogle Scholar
  41. Higashida K, Kim SH, Higuchi M, Holloszy JO, Han DH (2011) Normal adaptations to exercise despite protection against oxidative stress. Am J Physiol Endocrinol Metab 301:E779–784PubMedCentralPubMedGoogle Scholar
  42. Hinson JP, Kapas S, Smith DM (2000) Adrenomedullin, a multifunctional regulatory peptide. Endocr Rev 21:138–167PubMedGoogle Scholar
  43. Hooper PL, Hooper JJ (2004) Vitamin E and atherosclerosis. Prev Cardiol 7:144PubMedGoogle Scholar
  44. Huai Q, Mazar AP, Kuo A, Parry GC, Shaw DE, Callahan J, Li Y, Yuan C, Bian C, Chen L, Furie B, Furie BC, Cines DB, Huang M (2006) Structure of human urokinase plasminogen activator in complex with its receptor. Science 311:656–659PubMedGoogle Scholar
  45. Ji LL, Gomez-Cabrera MC, Viña J (2007) Role of nuclear factor kappaB and mitogen-activated protein kinase signaling in exercise-induced antioxidant enzyme adaptation. Appl Physiol Nutr Metab 32:930–935PubMedGoogle Scholar
  46. Kadambi A, Skalak TC (2000) Role of leukocytes and tissue-derived oxidants in short-term skeletal muscle ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 278:H435–443PubMedGoogle Scholar
  47. Kang C, O’Moore KM, Dickman JR, Ji LL (2009) Exercise activation of muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha signaling is redox sensitive. Free Radic Biol Med 47:1394–1400PubMedGoogle Scholar
  48. Keren G, Epstein Y (1980) The effect of high dosage vitamin C intake on aerobic and anaerobic capacity. J Sports Med Phys Fitness 20:145–148PubMedGoogle Scholar
  49. Khassaf M, McArdle A, Esanu C, Vasilaki A, McArdle F, Griffiths RD, Brodie DA, Jackson MJ (2003) Effect of vitamin C supplements on antioxidant defence and stress proteins in human lymphocytes and skeletal muscle. J Physiol 549:645–652PubMedCentralPubMedGoogle Scholar
  50. Kim JH, Malhotra R, Chiampas G, D’Hemecourt P, Troyanos C, Cianca J, Smith RN, Wang TJ, Roberts WO, Thompson PD, Baggish AL (2012) Cardiac arrest during long-distance running races. N Engl J Med 366:130–140PubMedGoogle Scholar
  51. Kivela R, Silvennoinen M, Lehti M, Jalava S, Vihko V, Kainulainen H (2008) Exercise-induced expression of angiogenic growth factors in skeletal muscle and in capillaries of healthy and diabetic mice. Cardiovasc Diabetol 7:13PubMedCentralPubMedGoogle Scholar
  52. Kofoed K, Eugen-Olsen J, Petersen J, Larsen K, Andersen O (2008) Predicting mortality in patients with systemic inflammatory response syndrome: an evaluation of two prognostic models, two soluble receptors, and a macrophage migration inhibitory factor. Eur J Clin Microbiol Infect Dis 27:375–383PubMedGoogle Scholar
  53. Kyparos A, Matziari C, Albani M, Arsos G, Deligiannis A (2001) A decrease in soleus muscle force generation in rats after downhill running. Can J Appl Physiol 26:323–335PubMedGoogle Scholar
  54. L’Abate P, Wiegert S, Struck J, Wellmann S, Cannizzaro V (2013) Determinants of plasma copeptin: a systematic investigation in a pediatric mechanical ventilation model. Respir Physiol Neurobiol 185:222–227PubMedGoogle Scholar
  55. Laughlin MH, Hale CC, Novela L, Gute D, Hamilton N, Ianuzzo CD (1991) Biochemical characterization of exercise-trained porcine myocardium. J Appl Physiol 71:229–235PubMedGoogle Scholar
  56. Lee C, Okabe E (1995) Hydroxyl radical-mediated reduction of Ca(2+)-ATPase activity of masseter muscle sarcoplasmic reticulum. Jpn J Pharmacol 67:21–28PubMedGoogle Scholar
  57. Lieber RL, Friden J (1999) Mechanisms of muscle injury after eccentric contraction. J Sci Med Sport 2:253–265PubMedGoogle Scholar
  58. Linder N, Rapola J, Raivio KO (1999) Cellular expression of xanthine oxidoreductase protein in normal human tissues. Lab Invest 79:967–974PubMedGoogle Scholar
  59. Lippi G, Maffulli N (2009) Biological influence of physical exercise on hemostasis. Semin Thromb Hemost 35:269–276PubMedGoogle Scholar
  60. Lippi G, Montagnana M, Franchini M, Favaloro EJ, Targher G (2008a) The paradoxical relationship between serum uric acid and cardiovascular disease. Clin Chim Acta 392:1–7PubMedGoogle Scholar
  61. Lippi G, Schena F, Montagnana M, Salvagno GL, Guidi GC (2008b) Influence of acute physical exercise on emerging muscular biomarkers. Clin Chem Lab Med 46:1313–1318PubMedGoogle Scholar
  62. Lippi G, Guidi GC, Salvagno GL, Impellizzeri F, Schena F (2010) Highly sensitive cardiac troponin T is not increased by strenuous eccentric exercise. Am J Cardiol 105:1043–1044PubMedGoogle Scholar
  63. Lippi G, Cervellin G, Banfi G, Plebani M (2011a) Cardiac troponins and physical exercise. It’s time to make a point. Biochem Med (Zagreb) 21:55–62Google Scholar
  64. Lippi G, Schena F, Montagnana M, Salvagno GL, Banfi G, Guidi GC (2011b) Significant variation of traditional markers of liver injury after a half-marathon run. Eur J Intern Med 22:e36–38PubMedGoogle Scholar
  65. Lippi G, Schena F, Salvagno GL, Tarperi C, Aloe R, Guidi GC (2011c) Comparison of conventional and highly-sensitive troponin I measurement in ultra-marathon runners. J Thromb Thrombolysis 33:338–342Google Scholar
  66. Lippi G, Sanchis-Gomar F, Salvagno GL, Aloe R, Schena F, Guidi GC (2012a) Variation of serum and urinary neutrophil gelatinase associated lipocalin (NGAL) after strenuous physical exercise. Clin Chem Lab Med 50:1585–1589PubMedGoogle Scholar
  67. Lippi G, Schena F, Dipalo M, Montagnana M, Salvagno GL, Aloe R, Guidi GC (2012) Troponin I measured with a high sensitivity immunoassay is significantly increased after a half marathon run. Scand J Clin Lab Invest 72: 467–470Google Scholar
  68. Lonn E, Bosch J, Yusuf S, Sheridan P, Pogue J, Arnold JM, Ross C, Arnold A, Sleight P, Probstfield J, Dagenais GR (2005) Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA 293:1338–1347PubMedGoogle Scholar
  69. Mao X, Wang T, Liu Y, Irwin MG, Ou JS, Liao XL, Gao X, Xu Y, Ng KF, Vanhoutte PM, Xia Z (2013) N-acetylcysteine and allopurinol confer synergy in attenuating myocardial ischemia injury via restoring HIF-1alpha/HO-1 signaling in diabetic rats. PLoS ONE 8:e68949PubMedCentralPubMedGoogle Scholar
  70. Marshall RJ, Scott KC, Hill RC, Lewis DD, Sundstrom D, Jones GL, Harper J (2002) Supplemental vitamin C appears to slow racing greyhounds. J Nutr 132:1616S–1621SPubMedGoogle Scholar
  71. Massey V, Komai H, Palmer G, Elion GB (1970) On the mechanism of inactivation of xanthine oxidase by allopurinol and other pyrazolo[3,4-d]pyrimidines. J Biol Chem 245:2837–2844PubMedGoogle Scholar
  72. Maughan RJ (1999) Nutritional ergogenic aids and exercise performance. Nutr Res Rev 12:255–280PubMedGoogle Scholar
  73. McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312:159–163PubMedGoogle Scholar
  74. Meador BM, Huey KA (2010) Statin-associated myopathy and its exacerbation with exercise. Muscle Nerve 42:469–479PubMedGoogle Scholar
  75. Mellin V, Isabelle M, Oudot A, Vergely-Vandriesse C, Monteil C, Di Meglio B, Henry JP, Dautreaux B, Rochette L, Thuillez C, Mulder P (2005) Transient reduction in myocardial free oxygen radical levels is involved in the improved cardiac function and structure after long-term allopurinol treatment initiated in established chronic heart failure. Eur Heart J 26:1544–1550PubMedGoogle Scholar
  76. Montoro-Garcia S, Hernandez-Romero D, Jover E, Garcia-Honrubia A, Vilchez JA, Casas T, Martinez P, Climent V, Caballero L, Valdes M, Marin F (2012) Growth differentiation factor-15, a novel biomarker related with disease severity in patients with hypertrophic cardiomyopathy. Eur J Intern Med 23:169–174PubMedGoogle Scholar
  77. Moorhouse PC, Grootveld M, Halliwell B, Quinlan JG, Gutteridge JM (1987) Allopurinol and oxypurinol are hydroxyl radical scavengers. FEBS Lett 213:23–28PubMedGoogle Scholar
  78. Mor A, Wortmann RL, Mitnick HJ, Pillinger MH (2011) Drugs causing muscle disease. Rheum Dis Clin North Am 37:219–231, viPubMedGoogle Scholar
  79. Munk PS, Valborgland T, Butt N, Larsen AI (2011) Response of growth differentiation factor-15 to percutaneous coronary intervention and regular exercise training. Scand Cardiovasc J 45:27–32PubMedGoogle Scholar
  80. Neilan TG, Januzzi JL, Lee-Lewandrowski E, Ton-Nu TT, Yoerger DM, Jassal DS, Lewandrowski KB, Siegel AJ, Marshall JE, Douglas PS, Lawlor D, Picard MH, Wood MJ (2006) Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston marathon. Circulation 114:2325–2333PubMedGoogle Scholar
  81. Nishizawa J, Nakai A, Matsuda K, Komeda M, Ban T, Nagata K (1999) Reactive oxygen species play an important role in the activation of heat shock factor 1 in ischemic-reperfused heart. Circulation 99:934–941PubMedGoogle Scholar
  82. Noman A, Ang DS, Ogston S, Lang CC, Struthers AD (2010) Effect of high-dose allopurinol on exercise in patients with chronic stable angina: a randomised, placebo controlled crossover trial. Lancet 375:2161–2167PubMedCentralPubMedGoogle Scholar
  83. Nunn AV, Bell JD, Guy GW (2009) Lifestyle-induced metabolic inflexibility and accelerated ageing syndrome: insulin resistance, friend or foe? Nutr Metab (Lond) 6:16Google Scholar
  84. Ohlmann A, Giffhorn-Katz S, Becker I, Katz N, Immenschuh S (2003) Regulation of heme oxygenase-1 gene expression by anoxia and reoxygenation in primary rat hepatocyte cultures. Exp Biol Med (Maywood) 228:584–589Google Scholar
  85. Pacher P, Nivorozhkin A, Szabo C (2006) Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev 58:87–114PubMedCentralPubMedGoogle Scholar
  86. Papezikova I, Pekarova M, Kolarova H, Klinke A, Lau D, Baldus S, Lojek A, Kubala L (2012) Uric acid modulates vascular endothelial function through the down regulation of nitric oxide production. Free Radic Res 47:82–8Google Scholar
  87. Patel DR, Gyamfi R, Torres A (2009) Exertional rhabdomyolysis and acute kidney injury. Phys Sportsmed 37:71–79PubMedGoogle Scholar
  88. Paulsen G, Cumming KT, Holden G, Hallen J, Ronnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Ostgaard HN, Buer C, Midttun M, Freuchen F, Wiig H, Ulseth ET, Garthe I, Blomhoff R, Benestad HB, Raastad T (2014) Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double-blind, randomised, controlled trial. J Physiol 592:1887–1901PubMedGoogle Scholar
  89. Radak Z, Chung HY, Koltai E, Taylor AW, Goto S (2008) Exercise, oxidative stress and hormesis. Ageing Res Rev 7:34–42PubMedGoogle Scholar
  90. Reid MB (2001) Nitric oxide, reactive oxygen species, and skeletal muscle contraction. Med Sci Sports Exerc 33:371–376PubMedGoogle Scholar
  91. Reid MB, Shoji T, Moody MR, Entman ML (1992) Reactive oxygen in skeletal muscle. II Extracellular release of free radicals. J Appl Physiol (1985) 73:1805–1809Google Scholar
  92. Ristow M, Zarse K, Oberbach A, Kloting N, Birringer M, Kiehntopf M, Stumvoll M, Kahn CR, Bluher M (2009) Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A 106:8665–8670PubMedCentralPubMedGoogle Scholar
  93. Ruiz JR, Joyner M, Lucia A (2013) CrossTalk opposing view: prolonged intense exercise does not lead to cardiac damage. J Physiol 591:4943–4945PubMedCentralPubMedGoogle Scholar
  94. Sahib AS, Al-Jawad FH, Alkaisy AA (2010) Effect of antioxidants on the incidence of wound infection in burn patients. Ann Burns Fire Disasters 23:199–205PubMedCentralPubMedGoogle Scholar
  95. Sahlin K (1991) Control of energetic processes in contracting human skeletal muscle. Biochem Soc Trans 19:353–358PubMedGoogle Scholar
  96. Sahlin K, Broberg S, Ren JM (1989) Formation of inosine monophosphate (IMP) in human skeletal muscle during incremental dynamic exercise. Acta Physiol Scand 136:193–198PubMedGoogle Scholar
  97. Sahlin K, Ekberg K, Cizinsky S (1991) Changes in plasma hypoxanthine and free radical markers during exercise in man. Acta Physiol Scand 142:275–281PubMedGoogle Scholar
  98. Salvagno GL, Schena F, Gelati M, Danese E, Cervellin G, Guidi GC, Lippi G (2014) The concentration of high-sensitivity troponin I, galectin-3 and NT-proBNP substantially increase after a 60-km ultramarathon. Clin Chem Lab Med 52:267–272PubMedGoogle Scholar
  99. Sanchis-Gomar F, Lippi G (2014) Physical activity - an important preanalytical variable. Biochem Med (Zagreb) 24:68–79Google Scholar
  100. Sanchis-Gomar F, Bonaguri C, Aloe R, Pareja-Galeano H, Martinez-Bello V, Gomez-Cabrera MC, Candel J, Viña J, Lippi G (2013a) Effects of acute exercise and xanthine oxidase inhibition on novel cardiovascular biomarkers. Transl Res 162:102–109PubMedGoogle Scholar
  101. Sanchis-Gomar F, Bonaguri C, Pareja-Galeano H, Gomez-Cabrera MC, Candel J, Viña J, Lippi G (2013b) Effects of acute exercise and allopurinol administration on soluble urokinase plasminogen activator receptor (suPAR). Clin Lab 59:207–210PubMedGoogle Scholar
  102. Sanchis-Gomar F, Pareja-Galeano H, Cortell-Ballester J, Perez-Quilis C (2013c) Prevention of acute skeletal muscle wasting in critical illness. Minerva Anestesiol 80:748Google Scholar
  103. Sanchis-Gomar F, Pareja-Galeano H, Gomez-Cabrera MC, Candel J, Lippi G, Salvagno GL, Mann GE, Viña J (2014) Allopurinol prevents cardiac and skeletal muscle damage in professional soccer players. Scand J Med Sci Sports. doi: 10.1111/sms.12213
  104. Sanchis-Gomar F, Pareja-Galeano H, Santos-Lozano A, Fiuza-Luces C, Garatachea N, Lucia A (2014b) Strenuous exercise and the heart: are we not seeing the wood for the trees? Int J Cardiol. doi: 10.1016/j.ijcard.2014.07.159
  105. Sastre J, Asensi M, Gasco E, Pallardo FV, Ferrero JA, Furukawa T, Viña J (1992) Exhaustive physical exercise causes oxidation of glutathione status in blood: prevention by antioxidant administration. Am J Physiol 263:R992–995PubMedGoogle Scholar
  106. Schardinger F (1902) Uber das verhalten der kulmilch gegen methylenblau und seine verwendung zur unterscheidung von ungekochter und gekochter milch. Z Untersuch Nahrungs Genussmittel 5:1113–1121Google Scholar
  107. Sharman IM, Down MG, Sen RN (1971) The effects of vitamin E and training on physiological function and athletic performance in adolescent swimmers. Br J Nutr 26:265–276PubMedGoogle Scholar
  108. Sidenius N, Sier CF, Ullum H, Pedersen BK, Lepri AC, Blasi F, Eugen-Olsen J (2000) Serum level of soluble urokinase-type plasminogen activator receptor is a strong and independent predictor of survival in human immunodeficiency virus infection. Blood 96:4091–4095PubMedGoogle Scholar
  109. Stahrenberg R, Edelmann F, Mende M, Kockskamper A, Dungen HD, Luers C, Binder L, Herrmann-Lingen C, Gelbrich G, Hasenfuss G, Pieske B, Wachter R (2010) The novel biomarker growth differentiation factor 15 in heart failure with normal ejection fraction. Eur J Heart Fail 12:1309–1316PubMedCentralPubMedGoogle Scholar
  110. Stofan DA, Callahan LA, Di MA, Nethery DE, Supinski GS (2000) Modulation of release of reactive oxygen species by the contracting diaphragm. Am J Respir Crit Care Med 161:891–898PubMedGoogle Scholar
  111. Strobel NA, Peake JM, Matsumoto A, Marsh SA, Coombes JS, Wadley GD (2010) Antioxidant supplementation reduces skeletal muscle mitochondrial biogenesis. Med Sci Sports Exerc 43:1017–1024Google Scholar
  112. Tchou I, Margeli A, Tsironi M, Skenderi K, Barnet M, Kanaka-Gantenbein C, Papassotiriou I, Beris P (2009) Growth-differentiation factor-15, endoglin and N-terminal pro-brain natriuretic peptide induction in athletes participating in an ultramarathon foot race. Biomarkers 14:418–422PubMedGoogle Scholar
  113. Theodorou AA, Nikolaidis MG, Paschalis V, Koutsias S, Panayiotou G, Fatouros IG, Koutedakis Y, Jamurtas AZ (2011) No effect of antioxidant supplementation on muscle performance and blood redox status adaptations to eccentric training. Am J Clin Nutr 93:1373–1383PubMedGoogle Scholar
  114. Tsaras G, Owusu-Ansah A, Boateng FO, Amoateng-Adjepong Y (2009) Complications associated with sickle cell trait: a brief narrative review. Am J Med 122:507–512PubMedGoogle Scholar
  115. Tsutsui H, Kinugawa S, Matsushima S (2011) Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 301:H2181–2190PubMedGoogle Scholar
  116. Turnheim K, Krivanek P, Oberbauer R (1999) Pharmacokinetics and pharmacodynamics of allopurinol in elderly and young subjects. Br J Clin Pharmacol 48:501–509PubMedCentralPubMedGoogle Scholar
  117. Viña J, Severa E, Asensi M, Sastre J, Pallardó F, Ferrero JA, García de la Asunción J, Antón V, Marín J (1996) Exercise causes blood glutathione oxidation in chronic obstructive pulmonary disease: prevention by O2 therapy. J Appl Physiol (1985) 81:2199–2202Google Scholar
  118. Viña J, Gomez-Cabrera MC, Lloret A, Marquez R, Minana JB, Pallardo FV, Sastre J (2000a) Free radicals in exhaustive physical exercise: mechanism of production, and protection by antioxidants. IUBMB Life 50:271–277Google Scholar
  119. Viña J, Gimeno A, Sastre J, Desco C, Asensi M, Pallardo FV, Cuesta A, Ferrero JA, Terada LS, Repine JE (2000b) Mechanism of free radical production in exhaustive exercise in humans and rats; role of xanthine oxidase and protection by allopurinol. IUBMB Life 49:539–544Google Scholar
  120. Viña J, Sanchis-Gomar F, Martinez-Bello V, Gomez-Cabrera MC (2012) Exercise acts as a drug; the pharmacological benefits of exercise. Br J Pharmacol 167:1–12PubMedCentralPubMedGoogle Scholar
  121. Wadley GD, Nicolas MA, Hiam DS, McConell GK (2013) Xanthine oxidase inhibition attenuates skeletal muscle signaling following acute exercise but does not impair mitochondrial adaptations to endurance training. Am J Physiol Endocrinol Metab 304:E853–862PubMedGoogle Scholar
  122. Wray DW, Uberoi A, Lawrenson L, Bailey DM, Richardson RS (2009) Oral antioxidants and cardiovascular health in the exercise-trained and untrained elderly: a radically different outcome. Clin Sci (Lond) 116:433–441Google Scholar
  123. Yared K, Wood MJ (2009) Is marathon running hazardous to your cardiovascular health? The jury is still out. Radiology 251:3–5PubMedGoogle Scholar
  124. Yfanti C, Akerstrom T, Nielsen S, Nielsen AR, Mounier R, Mortensen OH, Lykkesfeldt J, Rose AJ, Fischer CP, Pedersen BK (2010) Antioxidant supplementation does not alter endurance training adaptation. Med Sci Sports Exerc 42:1388–1395PubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2014

Authors and Affiliations

  • F. Sanchis-Gomar
    • 1
    • 2
  • H. Pareja-Galeano
    • 1
    • 2
  • C. Perez-Quilis
    • 3
  • A. Santos-Lozano
    • 4
    • 5
  • C. Fiuza-Luces
    • 5
    • 6
  • N. Garatachea
    • 5
    • 7
  • G. Lippi
    • 8
  • A. Lucia
    • 5
    • 6
  1. 1.Department of PhysiologyUniversity of ValenciaValenciaSpain
  2. 2.Fundación Investigación Hospital Clínico Universitario/INCLIVAValenciaSpain
  3. 3.University Research Institute “Dr. Viña Giner”, Molecular and Mitochondrial MedicineCatholic University of Valencia “San Vicente Mártir”ValenciaSpain
  4. 4.Department of Biomedical SciencesUniversity of LeónLeónSpain
  5. 5.Research Institute of Hospital 12 de Octubre (“i + 12”)MadridSpain
  6. 6.European UniversityMadridSpain
  7. 7.University of ZaragozaHuescaSpain
  8. 8.Laboratory of Clinical Chemistry and HematologyAcademic Hospital of ParmaParmaItaly

Personalised recommendations