Cell Stress and Chaperones

, Volume 19, Issue 6, pp 753–761 | Cite as

Heat shock in the springtime

  • Kevin A. Morano
  • Lea Sistonen
  • Valérie MezgerEmail author
Meeting Review


A collaborative workshop dedicated to the discussion of heat shock factors in stress response, development, and disease was held on April 22–24, 2014 at the Université Paris Diderot in Paris, France. Recent years have witnessed an explosion of interest in these highly conserved transcription factors, with biological roles ranging from environmental sensing to human development and cancer.


Heat shock factors Stress response Transcription Epigenetics Development Disease 



We thank all the participants for their contribution. The workshop was sponsored by CNRS (PICS Program) and Fondation Jérôme Lejeune and was greatly facilitated by the excellent assistance of Geneviève Fournier, Xavier Jourdan (UMR71216), and Françoise Chevalier (UFR “Life Sciences”, Paris Diderot University). We also thank Déborah Bouvier and Aurélie de Thonel from the Mezger laboratory for their time and efforts toward making the workshop a success.


  1. Abane R, Mezger V (2010) Roles of heat shock factors in gametogenesis and development. FEBS J 277:4150–4172PubMedCrossRefGoogle Scholar
  2. Ahlskog JK, Bjork JK, Elsing AN, Aspelin C, Kallio M, Roos-Mattjus P, Sistonen L (2010) Anaphase-promoting complex/cyclosome participates in the acute response to protein-damaging stress. Mol Cell Biol 30:5608–5620PubMedCentralPubMedCrossRefGoogle Scholar
  3. Akerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545–555PubMedCentralPubMedCrossRefGoogle Scholar
  4. Anquez F, Courtade E, Sivery A, Suret P, Randoux S (2010) A high-power tunable Raman fiber ring laser for the investigation of singlet oxygen production from direct laser excitation around 1270 nm. Opt Express 18:22928–22936PubMedCrossRefGoogle Scholar
  5. Anquez F, El Y-BI, Randoux S, Suret P, Courtade E (2012) Cancerous cell death from sensitizer free photoactivation of singlet oxygen. Photochem Photobiol 88:167–174PubMedCrossRefGoogle Scholar
  6. Ben-Zvi A, Miller EA, Morimoto RI (2009) Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci U S A 106:14914–14919PubMedCentralPubMedCrossRefGoogle Scholar
  7. Calderwood SK (2012) HSF1, a versatile factor in tumorogenesis. Curr Mol Med 12:1102–1107PubMedCentralPubMedCrossRefGoogle Scholar
  8. Cho BR, Lee P, Hahn JS (2014) CK2-dependent inhibitory phosphorylation is relieved by Ppt1 phosphatase for the ethanol stress-specific activation of Hsf1 in Saccharomyces cerevisiae. Mol Micro 93:306–316CrossRefGoogle Scholar
  9. Craig EA, Gross CA (1991) Is hsp70 the cellular thermometer? Trends Biochem Sci 16:135–140PubMedCrossRefGoogle Scholar
  10. El Fatimy R et al (2014) Heat shock factor 2 is a stress-responsive mediator of neuronal migration defects in models of fetal alcohol syndrome. EMBO Mol Med 6:1043–1061PubMedCentralPubMedCrossRefGoogle Scholar
  11. Elsing AN et al. (2014) Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival. J Cell Biol, in pressGoogle Scholar
  12. Eroglu B, Min JN, Zhang Y, Szurek E, Moskophidis D, Eroglu A, Mivechi NF (2014) An essential role for heat shock transcription factor binding protein 1 (HSBP1) during early embryonic development. Dev Biol 386:448–460PubMedCrossRefGoogle Scholar
  13. Eymery A, Callanan M, Vourc’h C (2009) The secret message of heterochromatin: new insights into the mechanisms and function of centromeric and pericentric repeat sequence transcription. Int J Dev Biol 53:259–268PubMedCrossRefGoogle Scholar
  14. Fritah S et al (2009) Heat-shock factor 1 controls genome-wide acetylation in heat-shocked cells. Mol Biol Cell 20:4976–4984PubMedCentralPubMedCrossRefGoogle Scholar
  15. Fujimoto M et al (2012) RPA assists HSF1 access to nucleosomal DNA by recruiting histone chaperone FACT. Mol Cell 48:182–194PubMedCrossRefGoogle Scholar
  16. Goloudina AR, Demidov ON, Garrido C (2012) Inhibition of HSP70: a challenging anti-cancer strategy. Cancer Lett 325:117–124PubMedCrossRefGoogle Scholar
  17. Guertin MJ, Lis JT (2010) Chromatin landscape dictates HSF binding to target DNA elements. PLoS Genet 6:e1001114PubMedCentralPubMedCrossRefGoogle Scholar
  18. Jego G et al. (2014) Dual regulation of SPI1/PU.1 transcription factor by heat shock factor 1 (HSF1) during macrophage differentiation of monocytes. Leukemia Feb 7, Epub ahead of printGoogle Scholar
  19. Jolly C, Metz A, Govin J, Vigneron M, Turner BM, Khochbin S, Vourc’h C (2004) Stress-induced transcription of satellite III repeats. J Cell Biol 164:25–33PubMedCentralPubMedCrossRefGoogle Scholar
  20. Labbadia J, Morimoto RI (2014) Proteostasis and longevity: when does aging really begin? F1000Prime Rep 6:7Google Scholar
  21. Le Masson F, Christians E (2011) HSFs and regulation of Hsp70.1 (Hspa1b) in oocytes and preimplantation embryos: new insights brought by transgenic and knockout mouse models. Cell Stress Chaperones 16:275–285PubMedCentralPubMedCrossRefGoogle Scholar
  22. Le Masson F et al (2011) Identification of heat shock factor 1 molecular and cellular targets during embryonic and adult female meiosis. Mol Cell Biol 31:3410–3423PubMedCentralPubMedCrossRefGoogle Scholar
  23. Mendillo ML et al (2012) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150:549–562PubMedCentralPubMedCrossRefGoogle Scholar
  24. Mjahed H, Girodon F, Fontenay M, Garrido C (2012) Heat shock proteins in hematopoietic malignancies. Exp Cell Res 318:1946–1958PubMedCrossRefGoogle Scholar
  25. Pennisi E (2013) The CRISPR craze. Science 341:833–836PubMedCrossRefGoogle Scholar
  26. Petre I et al (2011) A simple mass-action model for the eukaryotic heat shock response and its mathematical validation. Natl Computing 10:595–612CrossRefGoogle Scholar
  27. Pierce A et al (2013) Over-expression of heat shock factor 1 phenocopies the effect of chronic inhibition of TOR by rapamycin and is sufficient to ameliorate Alzheimer’s-like deficits in mice modeling the disease. J Neurochem 124:880–893PubMedCrossRefGoogle Scholar
  28. Pierce A, Wei R, Halade D, Yoo SE, Ran Q, Richardson A (2010) A novel mouse model of enhanced proteostasis: full-length human heat shock factor 1 transgenic mice. Biochem Biophys Res Commun 402:59–65PubMedCrossRefGoogle Scholar
  29. Prahlad V, Cornelius T, Morimoto RI (2008) Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science 320:811–814PubMedCentralPubMedCrossRefGoogle Scholar
  30. Raynes R, Pombier KM, Nguyen K, Brunquell J, Mendez JE, Westerheide SD (2013) The SIRT1 modulators AROS and DBC1 regulate HSF1 activity and the heat shock response. PLoS One 8:e54364PubMedCentralPubMedCrossRefGoogle Scholar
  31. Reinke H, Saini C, Fleury-Olela F, Dibner C, Benjamin IJ, Schibler U (2008) Differential display of DNA-binding proteins reveals heat-shock factor 1 as a circadian transcription factor. Genes Dev 22:331–345PubMedCentralPubMedCrossRefGoogle Scholar
  32. Rieger TR, Morimoto RI, Hatzimanikatis V (2005) Mathematical modeling of the eukaryotic heat-shock response: dynamics of the hsp70 promoter. Biophys J 88:1646–1658PubMedCentralPubMedCrossRefGoogle Scholar
  33. Rossi A, Riccio A, Coccia M, Trotta E, La FS, Santoro MG (2014) The proteasome inhibitor bortezomib is a potent inducer of zinc finger AN1-type domain 2a gene expression: role of heat shock factor 1 (HSF1)-heat shock factor 2 (HSF2) heterocomplexes. J Biol Chem 289:12705–12715PubMedCrossRefGoogle Scholar
  34. Santagata S et al (2013) Tight coordination of protein translation and HSF1 activation supports the anabolic malignant state. Science 341:1238303PubMedCentralPubMedCrossRefGoogle Scholar
  35. Schneider R, Linka RM, Reinke H (2014) HSP90 affects the stability of BMAL1 and circadian gene expression. J Biol Rhythms 29:87–96PubMedCrossRefGoogle Scholar
  36. Shinkawa T et al (2011) Heat shock factor 2 is required for maintaining proteostasis against febrile-range thermal stress and polyglutamine aggregation. Mol Biol Cell 22:3571–3583PubMedCentralPubMedCrossRefGoogle Scholar
  37. Taylor RC, Berendzen KM, Dillin A (2014) Systemic stress signalling: understanding the cell non-autonomous control of proteostasis. Nat Rev Mol Cell Biol 15:211–217PubMedCrossRefGoogle Scholar
  38. Uchida S et al (2011) Impaired hippocampal spinogenesis and neurogenesis and altered affective behavior in mice lacking heat shock factor 1. Proc Natl Acad Sci U S A 108:1681–1686PubMedCentralPubMedCrossRefGoogle Scholar
  39. van Oosten-Hawle P, Morimoto RI (2014) Transcellular chaperone signaling: an organismal strategy for integrated cell stress responses. J Exp Biol 217:129–136PubMedCrossRefGoogle Scholar
  40. Vihervaara A, Sergelius C, Vasara J, Blom MA, Elsing AN, Roos-Mattjus P, Sistonen L (2013) Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells. Proc Natl Acad Sci U S A 110:E3388–E3397PubMedCentralPubMedCrossRefGoogle Scholar
  41. Vihervaara A, Sistonen L (2014) HSF1 at a glance. J Cell Sci 127:261–266PubMedCrossRefGoogle Scholar
  42. Vourc’h C, Biamonti G (2011) Transcription of Satellite DNAs in mammals. Prog Mol Subcell Biol 51:95–118PubMedCrossRefGoogle Scholar
  43. Westerheide SD, Anckar J, Stevens SM Jr, Sistonen L, Morimoto RI (2009) Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323:1063–1066PubMedCentralPubMedCrossRefGoogle Scholar
  44. Whitesell L, Lindquist S (2009) Inhibiting the transcription factor HSF1 as an anticancer strategy. Expert Opin Ther Targets 13:469–478PubMedCrossRefGoogle Scholar
  45. Wirth D, Bureau F, Melotte D, Christians E, Gustin P (2004) Evidence for a role of heat shock factor 1 in inhibition of NF-kappaB pathway during heat shock response-mediated lung protection. Am J Physiol Lung Cell Mol Physiol 287:L953–L961PubMedCrossRefGoogle Scholar
  46. Wirth D, Christians E, Li X, Benjamin IJ, Gustin P (2003) Use of Hsf1(−/−) mice reveals an essential role for HSF1 to protect lung against cadmium-induced injury. Toxicol Appl Pharmacol 192:12–20PubMedCrossRefGoogle Scholar
  47. Zelin E, Zhang Y, Toogun OA, Zhong S, Freeman BC (2012) The p23 molecular chaperone and GCN5 acetylase jointly modulate protein-DNA dynamics and open chromatin status. Mol Cell 48:459–470PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2014

Authors and Affiliations

  • Kevin A. Morano
    • 1
  • Lea Sistonen
    • 2
  • Valérie Mezger
    • 3
    • 4
    Email author
  1. 1.Department of Microbiology and Molecular GeneticsUniversity of Texas Medical School at HoustonHoustonUSA
  2. 2.Department of BiosciencesÅbo Akademi UniversityTurkuFinland
  3. 3.UMR7216 Epigenetics and Cell FateCNRSParis Cedex 13France
  4. 4.University Paris DiderotSorbonne Paris CitéParis Cedex 13France

Personalised recommendations