Cell Stress and Chaperones

, Volume 19, Issue 4, pp 447–464 | Cite as

The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes

  • Philip L. Hooper
  • Gabor Balogh
  • Eric Rivas
  • Kylie Kavanagh
  • Laszlo Vigh
Perspective and Reflection Article

Abstract

Organisms have evolved to survive rigorous environments and are not prepared to thrive in a world of caloric excess and sedentary behavior. A realization that physical exercise (or lack of it) plays a pivotal role in both the pathogenesis and therapy of type 2 diabetes mellitus (t2DM) has led to the provocative concept of therapeutic exercise mimetics. A decade ago, we attempted to simulate the beneficial effects of exercise by treating t2DM patients with 3 weeks of daily hyperthermia, induced by hot tub immersion. The short-term intervention had remarkable success, with a 1 % drop in HbA1, a trend toward weight loss, and improvement in diabetic neuropathic symptoms. An explanation for the beneficial effects of exercise and hyperthermia centers upon their ability to induce the cellular stress response (the heat shock response) and restore cellular homeostasis. Impaired stress response precedes major metabolic defects associated with t2DM and may be a near seminal event in the pathogenesis of the disease, tipping the balance from health into disease. Heat shock protein inducers share metabolic pathways associated with exercise with activation of AMPK, PGC1-a, and sirtuins. Diabetic therapies that induce the stress response, whether via heat, bioactive compounds, or genetic manipulation, improve or prevent all of the morbidities and comorbidities associated with the disease. The agents reduce insulin resistance, inflammatory cytokines, visceral adiposity, and body weight while increasing mitochondrial activity, normalizing membrane structure and lipid composition, and preserving organ function. Therapies restoring the stress response can re-tip the balance from disease into health and address the multifaceted defects associated with the disease.

Abbreviations

Akt

Protein kinase B

AMPK

5′ AMP-activated protein kinase

apo A1

Apo-lipoprotein A1

ER

Endoplasmic reticulum

GLUT4

Glucose transporter type 4

GM3

Monosialodihexosylganglioside

HSF1

Heat shock factor 1

HSP

Heat shock protein

iHSP

Intracellular heat shock proteins

IRS

Insulin receptor substrate

mTOR

Mammalian target of rapamycin

pIKK-β

Inhibitor of nuclear factor kappa-B kinase subunit beta

pJNK

Phosphorylated c-Jun N-terminal kinase

PGC1-α

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

pps

Pulses per second

t2DM

Type 2 diabetes mellitus

V

Volts

Notes

Acknowledgments

The authors thank Paul Hooper, Annie Hooper, and Chassidy Glaze for proof reading; Alistair Nunn and Michael Tytell for sharing ideas; and Paige Geiger, Anisha Gupte, Dan Kemp, Hirofumi Kai, and Tatsuya Kondo for research efforts.

References

  1. Adak S, Chowdhury S, Bhattacharyya M (2008) Dynamic and electrokinetic behavior of erythrocyte membrane in diabetes mellitus and diabetic cardiovascular disease. Biochim Biophys Acta 1780(2):108–115, PubMed PMID: 18035063PubMedGoogle Scholar
  2. Adami A, Pizzinelli P, Bringard A, Capelli C, Malacarne M, Lucini D et al (2013) Cardiovascular re-adjustments and baroreflex response during clinical reambulation procedure at the end of 35-day bed rest in humans. Appl Physiol Nutr Metab 38(6):673–680PubMedGoogle Scholar
  3. Alonso-Magdalena P, Quesada I, Nadal A (2011) Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nat Rev Endocrinol 7(6):346–353. doi: 10.1038/nrendo.2011.56 Google Scholar
  4. Apro W, Wang L, Ponten M, Blomstrand E, Sahlin K (2013) Resistance exercise induced mTORC1 signaling is not impaired by subsequent endurance exercise in human skeletal muscle. Am J Physiol Endocrinol Metab 305(1):E22–E32, PubMed PMID: 23632629PubMedGoogle Scholar
  5. Atalay M, Oksala NK, Laaksonen DE, Khanna S, Nakao C, Lappalainen J et al (2004a) Exercise training modulates heat shock protein response in diabetic rats. J Appl Physiol 97(2):605–611, PubMed PMID: 15075301. Epub 2004/04/13. engPubMedGoogle Scholar
  6. Atalay M, Oksala NK, Laaksonen DE, Khanna S, Nakao C, Lappalainen J et al (2004b) Exercise training modulates heat shock protein response in diabetic rats. J Appl Physiol (1985) 97(2):605–611, PubMed PMID: 15075301Google Scholar
  7. American Diabetes Association (2010) Standards of medical care in diabetes—2010. Diabetes Care 33(Suppl 1):S11–S61, PubMed PMID: 20042772. Pubmed Central PMCID: 2797382. Epub 2010/01/29. engPubMedCentralGoogle Scholar
  8. Balasubramanyam M, Adaikalakoteswari A, Monickaraj SF, Mohan V (2007) Telomere shortening & metabolic/vascular diseases. Indian J Med Res 125(3):441–450, PubMed PMID: 17496367PubMedGoogle Scholar
  9. Balogh G, Peter M, Glatz A, Gombos I, Torok Z, Horvath I et al (2013) Key role of lipids in heat stress management. FEBS Lett 587(13):1970–1980, PubMed PMID: 23684645PubMedGoogle Scholar
  10. Bartlett JD, Hwa Joo C, Jeong TS, Louhelainen J, Cochran AJ, Gibala MJ et al (2012) Matched work high-intensity interval and continuous running induce similar increases in PGC-1alpha mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle. J Appl Physiol 112(7):1135–1143, PubMed PMID: 22267390PubMedGoogle Scholar
  11. Bathaie SZ, Jafarnejad A, Hosseinkhani S, Nakhjavani M (2010) The effect of hot-tub therapy on serum Hsp70 level and its benefit on diabetic rats: a preliminary report. Int J Hyperthermia 26(6):577–585, PubMed PMID: 20707652PubMedGoogle Scholar
  12. Beever R (2010) The effects of repeated thermal therapy on quality of life in patients with type II diabetes mellitus. J Altern Complement Med 16(6):677–681, PubMed PMID: 20569036PubMedGoogle Scholar
  13. Belotto MF, Magdalon J, Rodrigues HG, Vinolo MA, Curi R, Pithon-Curi TC et al (2010) Moderate exercise improves leucocyte function and decreases inflammation in diabetes. Clin Exp Immunol 162(2):237–243, PubMed PMID: 20846161. Pubmed Central PMCID: 2996590PubMedCentralPubMedGoogle Scholar
  14. Berdichevsky A, Guarente L, Bose A (2010) Acute oxidative stress can reverse insulin resistance by inactivation of cytoplasmic JNK. J Biol Chem 285(28):21581–21589, PubMed PMID: 20430894. Pubmed Central PMCID: 2898407PubMedCentralPubMedGoogle Scholar
  15. Bhardwaj S, Passi SJ, Misra A (2011) Overview of trans fatty acids: biochemistry and health effects. Diabetes Metab Syndr 5(3):161–164, PubMed PMID: 22813572PubMedGoogle Scholar
  16. Biro S, Masuda A, Kihara T, Tei C (2003) Clinical implications of thermal therapy in lifestyle-related diseases. Exp Biol Med 228(10):1245–1249, PubMed PMID: 14610268Google Scholar
  17. Bobkova N, Guzhova I, Margulis B, Nesterova I, Medvinskaya N, Samokhin A et al (2013) Dynamics of endogenous Hsp70 synthesis in the brain of olfactory bulbectomized mice. Cell Stress Chaperones 18(1):109–118, PubMed PMID: 22836235. Epub 2012/07/28. engPubMedCentralPubMedGoogle Scholar
  18. Brameshuber M, Weghuber J, Ruprecht V, Gombos I, Horvath I, Vigh L et al (2010) Imaging of mobile long-lived nanoplatforms in the live cell plasma membrane. J Biol Chem 285(53):41765–41771, PubMed PMID: 20966075. Pubmed Central PMCID: 3009904PubMedCentralPubMedGoogle Scholar
  19. Brocca L, Cannavino J, Coletto L, Biolo G, Sandri M, Bottinelli R et al (2012) The time course of the adaptations of human muscle proteome to bed rest and the underlying mechanisms. J Physiol 590(Pt 20):5211–5230, PubMed PMID: 22848045. Pubmed Central PMCID: 3497573PubMedCentralPubMedGoogle Scholar
  20. Bromberg Z, Goloubinoff P, Saidi Y, Weiss YG (2013) The membrane-associated transient receptor potential vanilloid channel is the central heat shock receptor controlling the cellular heat shock response in epithelial cells. PloS one 8(2):e57149, PubMed PMID: 23468922. Pubmed Central PMCID: 3584136PubMedCentralPubMedGoogle Scholar
  21. Brown-Borg HM, Bartke A (2012) GH and IGF1: roles in energy metabolism of long-living GH mutant mice. J Gerontol A Biol Sci Med Sci 67(6):652–660, PubMed PMID: 22466316. Epub 2012/04/03. engPubMedGoogle Scholar
  22. Bruce CR, Carey AL, Hawley JA, Febbraio MA (2003) Intramuscular heat shock protein 72 and heme oxygenase-1 mRNA are reduced in patients with type 2 diabetes: evidence that insulin resistance is associated with a disturbed antioxidant defense mechanism. Diabetes 52(9):2338–2345, PubMed PMID: 12941774PubMedGoogle Scholar
  23. Bushell AJ, Klenerman L, Davies H, Grierson I, McArdle A, Jackson MJ (2002) Ischaemic preconditioning of skeletal muscle 2. Investigation of the potential mechanisms involved. J Bone Joint Surg Br Vol 84(8):1189–1193, PubMed PMID: 12463669Google Scholar
  24. Campisi J, Leem TH, Greenwood BN, Hansen MK, Moraska A, Higgins K et al (2003) Habitual physical activity facilitates stress-induced HSP72 induction in brain, peripheral, and immune tissues. Am J Physiol Regul Integr Comp Physiol 284(2):R520–R530, PubMed PMID: 12399251PubMedGoogle Scholar
  25. Chen ZP, Stephens TJ, Murthy S, Canny BJ, Hargreaves M, Witters LA et al (2003) Effect of exercise intensity on skeletal muscle AMPK signaling in humans. Diabetes 52(9):2205–2212, PubMed PMID: 12941758. Epub 2003/08/28. engPubMedGoogle Scholar
  26. Chen Y, Voegeli TS, Liu PP, Noble EG, Currie RW (2007) Heat shock paradox and a new role of heat shock proteins and their receptors as anti-inflammation targets. Inflamm Allergy Drug Targets 6(2):91–100, PubMed PMID: 17692032PubMedGoogle Scholar
  27. Cho S, Choi Y, Park S, Park T (2012) Carvacrol prevents diet-induced obesity by modulating gene expressions involved in adipogenesis and inflammation in mice fed with high-fat diet. J Nutr Biochem 23(2):192–201, PubMed PMID: 21447440PubMedGoogle Scholar
  28. Chou SD, Prince T, Gong J, Calderwood SK (2012) mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PloS One 7(6):e39679, PubMed PMID: 22768106. Pubmed Central PMCID: 3387249PubMedCentralPubMedGoogle Scholar
  29. Chung J, Nguyen AK, Henstridge DC, Holmes AG, Chan MH, Mesa JL et al (2008) HSP72 protects against obesity-induced insulin resistance. Proc Natl Acad Sci U S A 105(5):1739–1744, PubMed PMID: 18223156. Pubmed Central PMCID: 2234214PubMedCentralPubMedGoogle Scholar
  30. Conlee RK, Fisher AG (1979) Skeletal muscle adaptations to growth and exercise. Nurs Pract 4(3):34–35, 55. PubMed PMID: 440641Google Scholar
  31. Copps KD, White MF (2012) Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 55(10):2565–2582, PubMed PMID: 22869320PubMedCentralPubMedGoogle Scholar
  32. Crul T, Toth N, Piotto S, Literati-Nagy P, Tory K, Haldimann P et al (2013) Hydroximic acid derivatives: pleiotropic hsp co-inducers restoring homeostasis and robustness. Curr Pharm Des 19(3):309–346, PubMed PMID: 22920902PubMedGoogle Scholar
  33. Cunha DA, Ladriere L, Ortis F, Igoillo-Esteve M, Gurzov EN, Lupi R et al (2009) Glucagon-like peptide-1 agonists protect pancreatic beta-cells from lipotoxic endoplasmic reticulum stress through upregulation of BiP and JunB. Diabetes 58(12):2851–2862, PubMed PMID: 19720788. Pubmed Central PMCID: 2780890PubMedCentralPubMedGoogle Scholar
  34. Dai T, Patel-Chamberlin M, Natarajan R, Todorov I, Ma J, LaPage J et al (2009) Heat shock protein 27 overexpression mitigates cytokine-induced islet apoptosis and streptozotocin-induced diabetes. Endocrinology 150(7):3031–3039, PubMed PMID: 19325007. Pubmed Central PMCID: 2703555PubMedCentralPubMedGoogle Scholar
  35. Dandona P, Ghanim H, Monte SV, Caruana JA, Green K, Abuaysheh S, et al (2013) Increase in the mediators of asthma in obesity and obesity with type 2 diabetes: reduction with weight loss. Obesity. doi: 10.1002/oby.20524
  36. Daugaard JR, Richter EA (2001) Relationship between muscle fibre composition, glucose transporter protein 4 and exercise training: possible consequences in non-insulin-dependent diabetes mellitus. Acta Physiol Scand 171(3):267–276, PubMed PMID: 11412139PubMedGoogle Scholar
  37. Daugaard JR, Nielsen JN, Kristiansen S, Andersen JL, Hargreaves M, Richter EA (2000) Fiber type-specific expression of GLUT4 in human skeletal muscle: influence of exercise training. Diabetes 49(7):1092–1095, PubMed PMID: 10909963PubMedGoogle Scholar
  38. Diabetes Prevention Program Research Group, Knowler WC, Fowler SE, Hamman RF, Christophi CA, Hoffman HJ et al (2009) 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 374(9702):1677–1686, PubMed PMID: 19878986. Pubmed Central PMCID: 3135022PubMedGoogle Scholar
  39. Dillmann WH, Mestril R (1995) Heat shock proteins in myocardial stress. Z Kardiol 84(Suppl 4):87–90, PubMed PMID: 8585278PubMedGoogle Scholar
  40. Dokladny K, Ye D, Kennedy JC, Moseley PL, Ma TY (2008) Cellular and molecular mechanisms of heat stress-induced up-regulation of occludin protein expression: regulatory role of heat shock factor-1. Am J Pathol 172(3):659–670, PubMed PMID: 18276783. Pubmed Central PMCID: 2258255PubMedCentralPubMedGoogle Scholar
  41. Dudley GA, Abraham WM, Terjung RL (1982) Influence of exercise intensity and duration on biochemical adaptations in skeletal muscle. J Appl Physiol 53(4):844–850, PubMed PMID: 6295989PubMedGoogle Scholar
  42. Eckel RH, Grundy SM, Zimmet PZ (2005) The metabolic syndrome. Lancet 365(9468):1415–1428, PubMed PMID: 15836891. Epub 2005/04/20. engPubMedGoogle Scholar
  43. Eriksson JG (1999) Exercise and the treatment of type 2 diabetes mellitus. An update. Sports Med 27(6):381–391, PubMed PMID: 10418073. Epub 1999/07/27. engPubMedGoogle Scholar
  44. Farmer K, Williams SJ, Novikova L, Ramachandran K, Rawal S, Blagg BS et al (2012) KU-32, a novel drug for diabetic neuropathy, is safe for human islets and improves in vitro insulin secretion and viability. Exp Diabetes Res 2012:671673, PubMed PMID: 23197975. Pubmed Central PMCID: 3503326PubMedCentralPubMedGoogle Scholar
  45. Farnfield MM, Breen L, Carey KA, Garnham A, Cameron-Smith D (2012) Activation of mTOR signalling in young and old human skeletal muscle in response to combined resistance exercise and whey protein ingestion. Appl Physiol Nutr Metab 37(1):21–30PubMedGoogle Scholar
  46. Febbraio MA, Koukoulas I (2000) HSP72 gene expression progressively increases in human skeletal muscle during prolonged, exhaustive exercise. J Appl Physiol (1985) 89(3):1055–1060, PubMed PMID: 10956350Google Scholar
  47. Figueredo A, Ibarra JL, Rodriguez A, Molino AM, Gomez-delaConcha E, Fernandez-Cruz A et al (1996) Increased serum levels of IgA antibodies to hsp70 protein in patients with diabetes mellitus: their relationship with vascular complications. Clin Immunol Immunopathol 79(3):252–255, PubMed PMID: 8635283. Epub 1996/06/01. engPubMedGoogle Scholar
  48. Fittipaldi S, Dimauro I, Mercatelli N, Caporossi D (2014) Role of exercise-induced reactive oxygen species in the modulation of heat shock protein response. Free Radic Res 48:52–70. PubMed PMID: 23957557Google Scholar
  49. Frame S, Zheleva D (2006) Targeting glycogen synthase kinase-3 in insulin signalling. Expert Opin Ther Targets 10(3):429–444, PubMed PMID: 16706683PubMedGoogle Scholar
  50. Frosig C, Jorgensen SB, Hardie DG, Richter EA, Wojtaszewski JF (2004) 5′-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab 286(3):E411–E417, PubMed PMID: 14613924. Epub 2003/11/14. engPubMedGoogle Scholar
  51. Furuhashi M, Ishimura S, Ota H, Miura T (2011) Lipid chaperones and metabolic inflammation. Int J Inflamm 2011:642612, PubMed PMID: 22121495. Pubmed Central PMCID: 3206330. Epub 2011/11/29. engGoogle Scholar
  52. Gabai VL, Meriin AB, Mosser DD, Caron AW, Rits S, Shifrin VI et al (1997) Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. J Biol Chem 272(29):18033–18037, PubMed PMID: 9218432PubMedGoogle Scholar
  53. Garagnani P, Giuliani C, Pirazzini C, Olivieri F, Bacalini MG, Ostan R et al (2013) Centenarians as super-controls to assess the biological relevance of genetic risk factors for common age-related diseases: a proof of principle on type 2 diabetes. Aging (Albany NY) 5(5):373–385, PubMed PMID: 23804578. Pubmed Central PMCID: 3701112Google Scholar
  54. Garcia-Lara JM, Aguilar-Navarro S, Gutierrez-Robledo LM, Avila-Funes JA (2010) The metabolic syndrome, diabetes, and Alzheimer’s disease. Rev Invest Clin 62(4):343–349, PubMed PMID: 21218671PubMedGoogle Scholar
  55. Gaster M, Staehr P, Beck-Nielsen H, Schroder HD, Handberg A (2001) GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease? Diabetes 50(6):1324–1329, PubMed PMID: 11375332PubMedGoogle Scholar
  56. Geurts L, Neyrinck AM, Delzenne NM, Knauf C, Cani PD (2013) Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics. Benef Microbes 25:1–15, PubMed PMID: 23886976Google Scholar
  57. Gielen S, Adams V, Mobius-Winkler S, Linke A, Erbs S, Yu J et al (2003) Anti-inflammatory effects of exercise training in the skeletal muscle of patients with chronic heart failure. J Am Coll Cardiol 42(5):861–868, PubMed PMID: 12957433PubMedGoogle Scholar
  58. Gollnick PD, Armstrong RB, Saubert CW, Piehl K, Saltin B (1972) Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. J Appl Physiol 33(3):312–319, PubMed PMID: 4403464PubMedGoogle Scholar
  59. Gollnick PD, Armstrong RB, Saltin B, Saubert CW, Sembrowich WL, Shepherd RE (1973) Effect of training on enzyme activity and fiber composition of human skeletal muscle. J Appl Physiol 34(1):107–111, PubMed PMID: 4348914PubMedGoogle Scholar
  60. Gombos I, Crul T, Piotto S, Gungor B, Torok Z, Balogh G et al (2011) Membrane-lipid therapy in operation: the HSP co-inducer BGP-15 activates stress signal transduction pathways by remodeling plasma membrane rafts. PloS One 6(12):e28818. doi: 10.1371/journal.pone.0028818
  61. Graeber SY, Zhou-Suckow Z, Schatterny J, Hirtz S, Boucher RC, Mall MA (2013) Hypertonic saline is effective in the prevention and treatment of mucus obstruction but not airway inflammation in mice with chronic obstructive lung disease. Am J Respir Cell Mol Biol 49:410–417. PubMed PMID: 23590312Google Scholar
  62. Gupta S, Deepti A, Deegan S, Lisbona F, Hetz C, Samali A (2010) HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction. PLoS Biol 8(7):e1000410, PubMed PMID: 20625543. Pubmed Central PMCID: 2897763PubMedCentralPubMedGoogle Scholar
  63. Gupte AA, Bomhoff GL, Geiger PC (2008) Age-related differences in skeletal muscle insulin signaling: the role of stress kinases and heat shock proteins. J Appl Physiol (1985) 105(3):839–848, PubMed PMID: 18599680Google Scholar
  64. Gupte AA, Bomhoff GL, Swerdlow RH, Geiger PC (2009a) Heat treatment improves glucose tolerance and prevents skeletal muscle insulin resistance in rats fed a high-fat diet. Diabetes 58(3):567–578, PubMed PMID: 19073766. Pubmed Central PMCID: 2646055PubMedCentralPubMedGoogle Scholar
  65. Gupte AA, Bomhoff GL, Morris JK, Gorres BK, Geiger PC (2009b) Lipoic acid increases heat shock protein expression and inhibits stress kinase activation to improve insulin signaling in skeletal muscle from high-fat-fed rats. J Appl Physiol 106(4):1425–1434, PubMed PMID: 19179648PubMedGoogle Scholar
  66. Gupte AA, Bomhoff GL, Touchberry CD, Geiger PC (2011) Acute heat treatment improves insulin-stimulated glucose uptake in aged skeletal muscle. J Appl Physiol 110(2):451–457, PubMed PMID: 21148343. Pubmed Central PMCID: 3043783PubMedCentralPubMedGoogle Scholar
  67. Gurd BJ (2011) Deacetylation of PGC-1alpha by SIRT1: importance for skeletal muscle function and exercise-induced mitochondrial biogenesis. Appl Physiol Nutr Metab 36(5):589–597, PubMed PMID: 21888529PubMedGoogle Scholar
  68. Hamilton MT, Booth FW (2000) Skeletal muscle adaptation to exercise: a century of progress. J Appl Physiol 88(1):327–331, PubMed PMID: 10642397PubMedGoogle Scholar
  69. Han S, Choi JR, Soon Shin K, Kang SJ (2012) Resveratrol upregulated heat shock proteins and extended the survival of G93A-SOD1 mice. Brain Res 1483:112–117, PubMed PMID: 23000195PubMedGoogle Scholar
  70. Hara T, Ishida T, Cangara HM, Hirata K (2009) Endothelial cell-selective adhesion molecule regulates albuminuria in diabetic nephropathy. Microvasc Res 77(3):348–355, PubMed PMID: 19323980PubMedGoogle Scholar
  71. Harber MP, Konopka AR, Undem MK, Hinkley JM, Minchev K, Kaminsky LA et al (2012) Aerobic exercise training induces skeletal muscle hypertrophy and age-dependent adaptations in myofiber function in young and older men. J Appl Physiol 113(9):1495–1504, PubMed PMID: 22984247PubMedCentralPubMedGoogle Scholar
  72. Hawley JA, Lessard SJ (2008) Exercise training-induced improvements in insulin action. Acta Physiol 192(1):127–135, PubMed PMID: 18171435Google Scholar
  73. Holloszy JO (1967) Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242(9):2278–2282, PubMed PMID: 4290225PubMedGoogle Scholar
  74. Holloszy JO (1975) Adaptation of skeletal muscle to endurance exercise. Med Sci Sports 7(3):155–164, PubMed PMID: 173969PubMedGoogle Scholar
  75. Holloszy JO (2008) Regulation by exercise of skeletal muscle content of mitochondria and GLUT4. J Physiol Pharmacol Off J Polish Physiol Soc 59(Suppl 7):5–18, PubMed PMID: 19258654Google Scholar
  76. Holloway GP, Bezaire V, Heigenhauser GJ, Tandon NN, Glatz JF, Luiken JJ et al (2006) Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise. J Physiol 571(Pt 1):201–210, PubMed PMID: 16357012. Pubmed Central PMCID: 1805655PubMedCentralPubMedGoogle Scholar
  77. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA (2008) 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359(15):1577–1589, PubMed PMID: 18784090PubMedGoogle Scholar
  78. Holmes B, Dohm GL (2004) Regulation of GLUT4 gene expression during exercise. Med Sci Sports Exerc 36(7):1202–1206, PubMed PMID: 15235326PubMedGoogle Scholar
  79. Hooper PL (1999) Hot-tub therapy for type 2 diabetes mellitus. N Engl J Med 341(12):924–925, PubMed PMID: 10498473PubMedGoogle Scholar
  80. Hooper PL (2005) Systemic diabetes mellitus. Diabetes Technol Ther 7(2):337, PubMed PMID: 15857236PubMedGoogle Scholar
  81. Hooper PL, Hooper JJ (2005) Loss of defense against stress: diabetes and heat shock proteins. Diabetes Technol Ther 7(1):204–208, PubMed PMID: 15738717PubMedGoogle Scholar
  82. Hooper PL, Hooper PL (2009) Inflammation, heat shock proteins, and type 2 diabetes. Cell Stress Chaperones 14(2):113–115, PubMed PMID: 18720028. Pubmed Central PMCID: 2727993PubMedCentralPubMedGoogle Scholar
  83. Hooper PL, Hooper PL, Tytell M, Vigh L (2010) Xenohormesis: health benefits from an eon of plant stress response evolution. Cell Stress Chaperones 15(6):761–770, PubMed PMID: 20524162. Pubmed Central PMCID: 3024065PubMedCentralPubMedGoogle Scholar
  84. Horvath I, Vigh L (2010) Cell biology: stability in times of stress. Nature 463(7280):436–438, PubMed PMID: 20110981PubMedGoogle Scholar
  85. Hotamisligil GS (2005) Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes 54(Suppl 2):S73–S78, PubMed PMID: 16306344PubMedGoogle Scholar
  86. Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300(5622):1142–1145, PubMed PMID: 12750521. Epub 2003/05/17. engPubMedGoogle Scholar
  87. Hu G, Jousilahti P, Bidel S, Antikainen R, Tuomilehto J (2007) Type 2 diabetes and the risk of Parkinson’s disease. Diabetes Care 30(4):842–847, PubMed PMID: 17251276PubMedGoogle Scholar
  88. Huang HC, Tang D, Xu K, Jiang ZF (2014) Curcumin attenuates amyloid-beta-induced tau hyperphosphorylation in human neuroblastoma SH-SY5Y cells involving PTEN/Akt/GSK-3beta signaling pathway. J Recept Signal Transduct Res (in press). PubMed PMID: 24188406Google Scholar
  89. Hussey SE, McGee SL, Garnham A, McConell GK, Hargreaves M (2012) Exercise increases skeletal muscle GLUT4 gene expression in patients with type 2 diabetes. Diabetes Obes Metab 14(8):768–771, PubMed PMID: 22340256PubMedGoogle Scholar
  90. Ito-Nagahata T, Kurihara C, Hasebe M, Ishii A, Yamashita K, Iwabuchi M, et al (2013) Stilbene analogs of resveratrol improve insulin resistance through activation of AMPK. Biosci Biotechnol Biochem 77:1229–1235. PubMed PMID: 23748787Google Scholar
  91. Joo JI, Kim DH, Choi JW, Yun JW (2010) Proteomic analysis for antiobesity potential of capsaicin on white adipose tissue in rats fed with a high fat diet. J Proteome Res 9(6):2977–2987, PubMed PMID: 20359164PubMedGoogle Scholar
  92. Kabayama K, Sato T, Saito K, Loberto N, Prinetti A, Sonnino S et al (2007) Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci U S A 104(34):13678–13683, PubMed PMID: 17699617. Pubmed Central PMCID: 1949342PubMedCentralPubMedGoogle Scholar
  93. Kadoglou NP, Iliadis F, Angelopoulou N, Sailer N, Fotiadis G, Voliotis K et al (2009) Cardiorespiratory capacity is associated with favourable cardiovascular risk profile in patients with type 2 diabetes. J Diabet Complicat 23(3):160–166, PubMed PMID: 18413173Google Scholar
  94. Kars M, Yang L, Gregor MF, Mohammed BS, Pietka TA, Finck BN et al (2010) Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 59(8):1899–1905, PubMed PMID: 20522594. Pubmed Central PMCID: 2911053PubMedCentralPubMedGoogle Scholar
  95. Kavanagh K, Jones KL, Sawyer J, Kelley K, Carr JJ, Wagner JD et al (2007) Trans fat diet induces abdominal obesity and changes in insulin sensitivity in monkeys. Obesity 15(7):1675–1684, PubMed PMID: 17636085PubMedGoogle Scholar
  96. Kavanagh K, Zhang L, Wagner JD (2009) Tissue-specific regulation and expression of heat shock proteins in type 2 diabetic monkeys. Cell Stress Chaperones 14(3):291–299, PubMed PMID: 18843550. Pubmed Central PMCID: 2728265PubMedCentralPubMedGoogle Scholar
  97. Kavanagh K, Flynn DM, Jenkins KA, Zhang L, Wagner JD (2011) Restoring HSP70 deficiencies improves glucose tolerance in diabetic monkeys. Am J Physiol Endocrinol Metab 300(5):E894–E901, PubMed PMID: 21325107. Pubmed Central PMCID: 3093978PubMedCentralPubMedGoogle Scholar
  98. Kavanagh K, Wylie AT, Chavanne TJ, Jorgensen MJ, Voruganti VS, Comuzzie AG et al (2012) Aging does not reduce heat shock protein 70 in the absence of chronic insulin resistance. J Gerontol A Biol Sci Med Sci 67(10):1014–1021, PubMed PMID: 22403054. Pubmed Central PMCID: 3437965PubMedCentralPubMedGoogle Scholar
  99. Khassaf M, Child RB, McArdle A, Brodie DA, Esanu C, Jackson MJ (2001) Time course of responses of human skeletal muscle to oxidative stress induced by nondamaging exercise. J Appl Physiol (1985) 90(3):1031–1035, PubMed PMID: 11181616Google Scholar
  100. Kiraly MA, Campbell J, Park E, Bates HE, Yue JT, Rao V et al (2010) Exercise maintains euglycemia in association with decreased activation of c-Jun NH2-terminal kinase and serine phosphorylation of IRS-1 in the liver of ZDF rats. Am J Physiol Endocrinol Metab 298(3):E671–E682, PubMed PMID: 19996384PubMedGoogle Scholar
  101. Kokura S, Adachi S, Manabe E, Mizushima K, Hattori T, Okuda T et al (2007) Whole body hyperthermia improves obesity-induced insulin resistance in diabetic mice. Int J Hyperth Off J Eur Soc Hyperth Oncol N Am Hyperth Group 23(3):259–265, PubMed PMID: 17523018Google Scholar
  102. Kondo T, Sasaki K, Matsuyama R, Morino-Koga S, Adachi H, Suico MA et al (2012) Hyperthermia with mild electrical stimulation protects pancreatic beta-cells from cell stresses and apoptosis. Diabetes 61(4):838–847, PubMed PMID: 22362176. Pubmed Central PMCID: 3314363PubMedCentralPubMedGoogle Scholar
  103. Kraniou GN, Cameron-Smith D, Hargreaves M (2006) Acute exercise and GLUT4 expression in human skeletal muscle: influence of exercise intensity. J Appl Physiol 101(3):934–937, PubMed PMID: 16763099PubMedGoogle Scholar
  104. Kurucz I, Morva A, Vaag A, Eriksson KF, Huang X, Groop L et al (2002) Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance. Diabetes 51(4):1102–1109, PubMed PMID: 11916932PubMedGoogle Scholar
  105. Lash JM, Bohlen HG (1992) Functional adaptations of rat skeletal muscle arterioles to aerobic exercise training. J Appl Physiol 72(6):2052–2062, PubMed PMID: 1629056PubMedGoogle Scholar
  106. Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23(21):7448–7459, PubMed PMID: 14559994. Pubmed Central PMCID: 207643PubMedCentralPubMedGoogle Scholar
  107. Lee DH, Lee YJ, Kwon KH (2010) Neuroprotective effects of astaxanthin in oxygen–glucose deprivation in SH-SY5Y cells and global cerebral ischemia in rat. J Clin Biochem Nutr 47(2):121–129, PubMed PMID: 20838567. Pubmed Central PMCID: 2935152PubMedCentralPubMedGoogle Scholar
  108. Lee J, Sun C, Zhou Y, Lee J, Gokalp D, Herrema H et al (2011) p38 MAPK-mediated regulation of Xbp1s is crucial for glucose homeostasis. Nat Med 17(10):1251–1260, PubMed PMID: 21892182PubMedGoogle Scholar
  109. Lee JH, Gao J, Kosinski PA, Elliman SJ, Hughes TE, Gromada J et al (2013) Heat shock protein 90 (HSP90) inhibitors activate the heat shock factor 1 (HSF1) stress response pathway and improve glucose regulation in diabetic mice. Biochem Biophys Res Commun 430(3):1109–1113, PubMed PMID: 23261432PubMedGoogle Scholar
  110. Lehnen AM, Leguisamo NM, Pinto GH, Markoski M, De Angelis K, Machado UF et al (2011) Exercise-stimulated GLUT4 expression is similar in normotensive and hypertensive rats. Horm Metab Res = Hormon- und Stoffwechselforschung = Hormones et metabolisme 43(4):231–235, PubMed PMID: 21332027Google Scholar
  111. Leite SA, Monk AM, Upham PA, Bergenstal RM (2009) Low cardiorespiratory fitness in people at risk for type 2 diabetes: early marker for insulin resistance. Diabetol Metab Syndr 1(1):8, PubMed PMID: 19825145. Pubmed Central PMCID: 2762992PubMedCentralPubMedGoogle Scholar
  112. Lepore DA, Hurley JV, Stewart AG, Morrison WA, Anderson RL (2000) Prior heat stress improves survival of ischemic-reperfused skeletal muscle in vivo. Muscle Nerve 23(12):1847–1855, PubMed PMID: 11102908PubMedGoogle Scholar
  113. Li M, Kim DH, Tsenovoy PL, Peterson SJ, Rezzani R, Rodella LF et al (2008) Treatment of obese diabetic mice with a heme oxygenase inducer reduces visceral and subcutaneous adiposity, increases adiponectin levels, and improves insulin sensitivity and glucose tolerance. Diabetes 57(6):1526–1535, PubMed PMID: 18375438PubMedGoogle Scholar
  114. Liu Y, Steinacker JM (2001) Changes in skeletal muscle heat shock proteins: pathological significance. Front Biosci 6:D12–D25Google Scholar
  115. Liu Y, Lehmann M, Baur C, Storck M, Sunder-Plassmann L, Steinacker JM (2002) HSP70 expression in skeletal muscle of patients with peripheral arterial occlusive disease. Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg 24(3):269–273, PubMed PMID: 12217291Google Scholar
  116. Lollo PC, Moura CS, Morato PN, Amaya-Farfan J (2013) Differential response of heat shock proteins to uphill and downhill exercise in heart, skeletal muscle, lung and kidney tissues. J Sports Sci Med 12(3):461–466, PubMed PMID: 24149152. Pubmed Central PMCID: 3772589PubMedCentralPubMedGoogle Scholar
  117. Longhurst JC, Kelly AR, Gonyea WJ, Mitchell JH (1981) Chronic training with static and dynamic exercise: cardiovascular adaptation, and response to exercise. Circ Res 48(6 Pt 2):I171–I178, PubMed PMID: 7226460PubMedGoogle Scholar
  118. Luo Z, Ma L, Zhao Z, He H, Yang D, Feng X et al (2012) TRPV1 activation improves exercise endurance and energy metabolism through PGC-1alpha upregulation in mice. Cell Res 22(3):551–564, PubMed PMID: 22184011. Pubmed Central PMCID: 3292293PubMedCentralPubMedGoogle Scholar
  119. Manabe Y, Gollisch KS, Holton L, Kim YB, Brandauer J, Fuj NL, 2nd, et al (2013) Exercise training-induced adaptations associated with increases in skeletal muscle glycogen content. FEBS J 280:916–926. PubMed PMID: 23206309Google Scholar
  120. Maradana MR, Thomas R, O’Sullivan BJ (2013) Targeted delivery of curcumin for treating type 2 diabetes. Mol Nutr Food Res 57:1550–1556. PubMed PMID: 23495213Google Scholar
  121. Marini M, Abruzzo PM, Bolotta A, Veicsteinas A, Ferreri C (2011) Aerobic training affects fatty acid composition of erythrocyte membranes. Lipids Health Dis 10:188, PubMed PMID: 22018397. Pubmed Central PMCID: 3251039PubMedCentralPubMedGoogle Scholar
  122. Marino JS, Peterson SJ, Li M, Vanella L, Sodhi K, Hill JW et al (2012) ApoA-1 mimetic restores adiponectin expression and insulin sensitivity independent of changes in body weight in female obese mice. Nutr Diabetes 2:e33, PubMed PMID: 23169576. Pubmed Central PMCID: 3341710PubMedCentralPubMedGoogle Scholar
  123. McClung JP, Hasday JD, He JR, Montain SJ, Cheuvront SN, Sawka MN et al (2008) Exercise-heat acclimation in humans alters baseline levels and ex vivo heat inducibility of HSP72 and HSP90 in peripheral blood mononuclear cells. Am J Physiol Regul Integr Comp Physiol 294(1):R185–R191, PubMed PMID: 17977914. Epub 2007/11/06. engPubMedGoogle Scholar
  124. McMurtry AL, Cho K, Young LJ, Nelson CF, Greenhalgh DG (1999) Expression of HSP70 in healing wounds of diabetic and nondiabetic mice. J Surg Res 86(1):36–41, PubMed PMID: 10452866PubMedGoogle Scholar
  125. Mestril R, Chi SH, Sayen MR, O’Reilly K, Dillmann WH (1994a) Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against simulated ischemia-induced injury. J Clin Investig 93(2):759–767, PubMed PMID: 8113409. Pubmed Central PMCID: 293923PubMedCentralPubMedGoogle Scholar
  126. Mestril R, Chi SH, Sayen MR, Dillmann WH (1994b) Isolation of a novel inducible rat heat-shock protein (HSP70) gene and its expression during ischaemia/hypoxia and heat shock. Biochem J 298(Pt 3):561–569, PubMed PMID: 8141767. Pubmed Central PMCID: 1137895PubMedCentralPubMedGoogle Scholar
  127. Mikami T, Sumida S, Ishibashi Y, Ohta S (2004) Endurance exercise training inhibits activity of plasma GOT and liver caspase-3 of mice [correction of rats] exposed to stress by induction of heat shock protein 70. J Appl Physiol (1985) 96(5):1776–1781, PubMed PMID: 15075310Google Scholar
  128. Milne KJ, Wolff S, Noble EG (2012) Myocardial accumulation and localization of the inducible 70-kDa heat shock protein, Hsp70, following exercise. J Appl Physiol (1985) 113(6):853–860, PubMed PMID: 22773766. Pubmed Central PMCID: 3472482Google Scholar
  129. Morino S, Kondo T, Sasaki K, Adachi H, Suico MA, Sekimoto E et al (2008) Mild electrical stimulation with heat shock ameliorates insulin resistance via enhanced insulin signaling. PloS One 3(12):e4068, PubMed PMID: 19114996. Pubmed Central PMCID: 2603588PubMedCentralPubMedGoogle Scholar
  130. Morino-Koga S, Yano S, Kondo T, Shimauchi Y, Matsuyama S, Okamoto Y et al (2013) Insulin receptor activation through its accumulation in lipid rafts by mild electrical stress. J Cell Physiol 228(2):439–446, PubMed PMID: 22740366PubMedGoogle Scholar
  131. Morton JP, Kayani AC, McArdle A, Drust B (2009) The exercise-induced stress response of skeletal muscle, with specific emphasis on humans. Sports Med 39(8):643–662. doi: 10.2165/00007256-200939080-00003 Google Scholar
  132. Muller S, Denet S, Candiloros H, Barrois R, Wiernsperger N, Donner M et al (1997) Action of metformin on erythrocyte membrane fluidity in vitro and in vivo. Eur J Pharmacol 337(1):103–110, PubMed PMID: 9389387PubMedGoogle Scholar
  133. Murshid A, Eguchi T, Calderwood SK (2013) Stress proteins in aging and life span. Int J Hyperthermia 29(5):442–447, PubMed PMID: 23742046PubMedGoogle Scholar
  134. Nakhjavani M, Morteza A, Khajeali L, Esteghamati A, Khalilzadeh O, Asgarani F et al (2010) Increased serum HSP70 levels are associated with the duration of diabetes. Cell Stress Chaperones 15(6):959–964, PubMed PMID: 20496051. Pubmed Central PMCID: 3024058PubMedCentralPubMedGoogle Scholar
  135. Nakhjavani M, Morteza A, Asgarani F, Khalilzadeh O, Ghazizadeh Z, Bathaie SZ et al (2012) The dual behavior of heat shock protein 70 and asymmetric dimethylarginine in relation to serum CRP levels in type 2 diabetes. Gene 498(1):107–111, PubMed PMID: 22349026PubMedGoogle Scholar
  136. Ndisang JF (2014) The heme oxygenase system selectively modulates proteins implicated in metabolism, oxidative stress and inflammation in spontaneously hypertensive rats. Curr Pharm Des (in press). PubMed PMID: 23978103Google Scholar
  137. Nicolai A, Li M, Kim DH, Peterson SJ, Vanella L, Positano V et al (2009) Heme oxygenase-1 induction remodels adipose tissue and improves insulin sensitivity in obesity-induced diabetic rats. Hypertension 53(3):508–515, PubMed PMID: 19171794. Pubmed Central PMCID: 2745551PubMedCentralPubMedGoogle Scholar
  138. Nishizawa J, Nakai A, Higashi T, Tanabe M, Nomoto S, Matsuda K et al (1996) Reperfusion causes significant activation of heat shock transcription factor 1 in ischemic rat heart. Circulation 94(9):2185–2192, PubMed PMID: 8901670PubMedGoogle Scholar
  139. Nomura T, Li XH, Ogata H, Sakai K, Kondo T, Takano Y et al (2011) Suppressive effects of continuous low-dose-rate gamma irradiation on diabetic nephropathy in type II diabetes mellitus model mice. Radiat Res 176(3):356–365, PubMed PMID: 21718105PubMedGoogle Scholar
  140. Nunn AV, Guy GW, Brodie JS, Bell JD (2010) Inflammatory modulation of exercise salience: using hormesis to return to a healthy lifestyle. Nutr Metab (Lond) 7:87, PubMed PMID: 21143891. Pubmed Central PMCID: 3009972Google Scholar
  141. O’Gorman DJ, Karlsson HK, McQuaid S, Yousif O, Rahman Y, Gasparro D et al (2006) Exercise training increases insulin-stimulated glucose disposal and GLUT4 (SLC2A4) protein content in patients with type 2 diabetes. Diabetologia 49(12):2983–2992, PubMed PMID: 17019595PubMedGoogle Scholar
  142. Olsen RH, Krogh-Madsen R, Thomsen C, Booth FW, Pedersen BK (2008) Metabolic responses to reduced daily steps in healthy nonexercising men. JAMA J Am Med Assoc 299(11):1261–1263, PubMed PMID: 18349087Google Scholar
  143. Ornish D, Lin J, Chan JM, Epel E, Kemp C, Weidner G et al (2013) Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol 14(11):1112–1120, PubMed PMID: 24051140PubMedGoogle Scholar
  144. Ostergard T, Andersen JL, Nyholm B, Lund S, Nair KS, Saltin B et al (2006) Impact of exercise training on insulin sensitivity, physical fitness, and muscle oxidative capacity in first-degree relatives of type 2 diabetic patients. Am J Physiol Endocrinol Metab 290(5):E998–E1005, PubMed PMID: 16352678. Epub 2005/12/15. engPubMedGoogle Scholar
  145. Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306(5695):457–461, PubMed PMID: 15486293PubMedGoogle Scholar
  146. Pahlavani MA, Harris MD, Moore SA, Weindruch R, Richardson A (1995) The expression of heat shock protein 70 decreases with age in lymphocytes from rats and rhesus monkeys. Exp Cell Res 218(1):310–318, PubMed PMID: 7737368PubMedGoogle Scholar
  147. Pandita TK, Higashikubo R, Hunt CR (2004) HSP70 and genomic stability. Cell Cycle 3(5):591–592, PubMed PMID: 15044849PubMedGoogle Scholar
  148. Panossian A, Wikman G, Kaur P, Asea A (2009) Adaptogens exert a stress-protective effect by modulation of expression of molecular chaperones. Phytomedicine 16(6–7):617–622, PubMed PMID: 19188053PubMedGoogle Scholar
  149. Park HS, Lee JS, Huh SH, Seo JS, Choi EJ (2001) Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. EMBO J 20(3):446–456, PubMed PMID: 11157751. Pubmed Central PMCID: 133486. Epub 2001/02/07. engPubMedCentralPubMedGoogle Scholar
  150. Pauli JR, Ropelle ER, Cintra DE, De Souza CT, da Silva AS, Moraes JC et al (2010) Acute exercise reverses aged-induced impairments in insulin signaling in rodent skeletal muscle. Mech Ageing Dev 131(5):323–329, PubMed PMID: 20307567PubMedGoogle Scholar
  151. Perona JS, Vogler O, Sanchez-Dominguez JM, Montero E, Escriba PV, Ruiz-Gutierrez V (2007) Consumption of virgin olive oil influences membrane lipid composition and regulates intracellular signaling in elderly adults with type 2 diabetes mellitus. J Gerontol A Biol Sci Med Sci 62(3):256–263, PubMed PMID: 17389722PubMedGoogle Scholar
  152. Petersen AM, Pedersen BK (2006) The role of IL-6 in mediating the anti-inflammatory effects of exercise. J Physiol Pharmacol Off J Polish Physiol Soc 57(Suppl 10):43–51, PubMed PMID: 17242490Google Scholar
  153. Raciti GA, Iadicicco C, Ulianich L, Vind BF, Gaster M, Andreozzi F et al (2010) Glucosamine-induced endoplasmic reticulum stress affects GLUT4 expression via activating transcription factor 6 in rat and human skeletal muscle cells. Diabetologia 53(5):955–965, PubMed PMID: 20165829PubMedGoogle Scholar
  154. Reznick RM, Shulman GI (2006) The role of AMP-activated protein kinase in mitochondrial biogenesis. J Physiol 574(Pt 1):33–39, PubMed PMID: 16709637. Pubmed Central PMCID: 1817787PubMedCentralPubMedGoogle Scholar
  155. Richter EA, Hargreaves M (2013) Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev 93(3):993–1017, PubMed PMID: 23899560PubMedGoogle Scholar
  156. Richter EA, Nielsen JN, Jorgensen SB, Frosig C, Birk JB, Wojtaszewski JF (2004) Exercise signalling to glucose transport in skeletal muscle. Proc Nutr Soc 63(2):211–216, PubMed PMID: 15294032. Epub 2004/08/06. engPubMedGoogle Scholar
  157. Rincon M, Rudin E, Barzilai N (2005) The insulin/IGF-1 signaling in mammals and its relevance to human longevity. Exp Gerontol 40(11):873–877, PubMed PMID: 16168602. Epub 2005/09/20. engPubMedGoogle Scholar
  158. Ringholm S, Bienso RS, Kiilerich K, Guadalupe-Grau A, Aachmann-Andersen NJ, Saltin B et al (2011) Bed rest reduces metabolic protein content and abolishes exercise-induced mRNA responses in human skeletal muscle. Am J Physiol Endocrinol Metab 301(4):E649–E658, PubMed PMID: 21750272PubMedGoogle Scholar
  159. Rodrigues-Krause J, Krause M, O’Hagan C, De Vito G, Boreham C, Murphy C et al (2012) Divergence of intracellular and extracellular HSP72 in type 2 diabetes: does fat matter? Cell Stress Chaperones 17(3):293–302, PubMed PMID: 22215518. Pubmed Central PMCID: 3312959. Epub 2012/01/05. engPubMedCentralPubMedGoogle Scholar
  160. Ropelle ER, Pauli JR, Prada PO, de Souza CT, Picardi PK, Faria MC et al (2006) Reversal of diet-induced insulin resistance with a single bout of exercise in the rat: the role of PTP1B and IRS-1 serine phosphorylation. J Physiol 577(Pt 3):997–1007, PubMed PMID: 17008371. Pubmed Central PMCID: 1890392Google Scholar
  161. Russell AP, Foletta VC, Snow RJ, Wadley GD (2013) Skeletal muscle mitochondria: a major player in exercise, health and disease. Biochim Biophys Acta. doi: 10.1016/j.bbagen.2013.11.016
  162. Sahin K, Orhan C, Tuzcu Z, Tuzcu M, Sahin N (2012) Curcumin ameloriates heat stress via inhibition of oxidative stress and modulation of Nrf2/HO-1 pathway in quail. Food Chem Toxicol 50(11):4035–4041, PubMed PMID: 22939939PubMedGoogle Scholar
  163. Sakamoto K, Goodyear LJ (2002) Invited review: intracellular signaling in contracting skeletal muscle. J Appl Physiol 93(1):369–383, PubMed PMID: 12070227PubMedGoogle Scholar
  164. Salo DC, Donovan CM, Davies KJ (1991) HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise. Free Radic Biol Med 11(3):239–246, PubMed PMID: 1937141PubMedGoogle Scholar
  165. Salway KD, Gallagher EJ, Page MM, Stuart JA (2011) Higher levels of heat shock proteins in longer-lived mammals and birds. Mech Ageing Dev 132(6–7):287–297, PubMed PMID: 21703294. Epub 2011/06/28. engPubMedGoogle Scholar
  166. Schneider SH, Amorosa LF, Khachadurian AK, Ruderman NB (1984) Studies on the mechanism of improved glucose control during regular exercise in type 2 (non-insulin-dependent) diabetes. Diabetologia 26(5):355–360, PubMed PMID: 6376244. Epub 1984/05/01. engPubMedGoogle Scholar
  167. Seo HR, Chung HY, Lee YJ, Bae S, Lee SJ, Lee YS (2006) p27Cip/Kip is involved in hsp25 or inducible hsp70 mediated adaptive response by low dose radiation. J Radiat Res 47(1):83–90, PubMed PMID: 16571921PubMedGoogle Scholar
  168. Sharma AK, Bharti S, Ojha S, Bhatia J, Kumar N, Ray R et al (2011) Up-regulation of PPARgamma, heat shock protein-27 and -72 by naringin attenuates insulin resistance, beta-cell dysfunction, hepatic steatosis and kidney damage in a rat model of type 2 diabetes. Br J Nutr 106(11):1713–1723, PubMed PMID: 21736771PubMedGoogle Scholar
  169. Sheng T, Yang K (2008) Adiponectin and its association with insulin resistance and type 2 diabetes. J Genet Genom 35(6):321–326. doi: 10.1016/S1673-8527(08)60047-8 Google Scholar
  170. Shinohara T, Takahashi N, Ooie T, Hara M, Shigematsu S, Nakagawa M et al (2006) Phosphatidylinositol 3-kinase-dependent activation of akt, an essential signal for hyperthermia-induced heat-shock protein 72, is attenuated in streptozotocin-induced diabetic heart. Diabetes 55(5):1307–1315, PubMed PMID: 16644687PubMedGoogle Scholar
  171. Silva KC, Rosales MA, Hamassaki DE, Saito KC, Faria AM, Ribeiro PA et al (2013) Green tea is neuroprotective in diabetic retinopathy. Invest Ophthalmol Vis Sci 54(2):1325–1336, PubMed PMID: 23299475PubMedGoogle Scholar
  172. Simar D, Malatesta D, Koechlin C, Cristol JP, Vendrell JP, Caillaud C (2004) Effect of age on Hsp72 expression in leukocytes of healthy active people. Exp Gerontol 39(10):1467–1474, PubMed PMID: 15501016PubMedGoogle Scholar
  173. Simar D, Jacques A, Caillaud C (2012) Heat shock proteins induction reduces stress kinases activation, potentially improving insulin signalling in monocytes from obese subjects. Cell Stress Chaperones 17(5):615–621, PubMed PMID: 22457223. Pubmed Central PMCID: 3535161PubMedCentralPubMedGoogle Scholar
  174. Singleton KD, Wischmeyer PE (2006) Oral glutamine enhances heat shock protein expression and improves survival following hyperthermia. Shock 25(3):295–299, PubMed PMID: 16552363PubMedGoogle Scholar
  175. Song XM, Kawano Y, Krook A, Ryder JW, Efendic S, Roth RA et al (1999) Muscle fiber type-specific defects in insulin signal transduction to glucose transport in diabetic GK rats. Diabetes 48(3):664–670, PubMed PMID: 10078575. Epub 1999/03/17. engPubMedGoogle Scholar
  176. Strub GM, Depcrynski A, Elmore LW, Holt SE (2008) Recovery from stress is a function of age and telomere length. Cell Stress Chaperones 13(4):475–482, PubMed PMID: 18491040. Pubmed Central PMCID: 2673929PubMedCentralPubMedGoogle Scholar
  177. Stuart CA, McCurry MP, Marino A, South MA, Howell ME, Layne AS et al (2013) Slow-twitch fiber proportion in skeletal muscle correlates with insulin responsiveness. J Clin Endocrinol Metab 98(5):2027–2036, PubMed PMID: 23515448. Pubmed Central PMCID: 3644602PubMedCentralPubMedGoogle Scholar
  178. Tang J, Pei Y, Zhou G (2013) When aging-onset diabetes is coming across with Alzheimer disease: comparable pathogenesis and therapy. Exp Gerontol 48(8):744–750, PubMed PMID: 23648584PubMedGoogle Scholar
  179. Tanner CJ, Barakat HA, Dohm GL, Pories WJ, MacDonald KG, Cunningham PR et al (2002) Muscle fiber type is associated with obesity and weight loss. Am J Physiol Endocrinol Metab 282(6):E1191–E1196, PubMed PMID: 12006347. Epub 2002/05/15. engPubMedGoogle Scholar
  180. Tanti JF, Ceppo F, Jager J, Berthou F (2012) Implication of inflammatory signaling pathways in obesity-induced insulin resistance. Front Endocrinol 3:181, PubMed PMID: 23316186. Pubmed Central PMCID: 3539134Google Scholar
  181. TeixeiradeLemos E, Reis F, Baptista S, Pinto R, Sepodes B, Vala H et al (2009) Exercise training decreases proinflammatory profile in Zucker diabetic (type 2) fatty rats. Nutrition 25(3):330–339, PubMed PMID: 19062255Google Scholar
  182. Teixeira-Lemos E, Nunes S, Teixeira F, Reis F (2011) Regular physical exercise training assists in preventing type 2 diabetes development: focus on its antioxidant and anti-inflammatory properties. Cardiovasc Diabetol 10:12, PubMed PMID: 21276212. Pubmed Central PMCID: 3041659PubMedCentralPubMedGoogle Scholar
  183. Tobin BW, Uchakin PN, Leeper-Woodford SK (2002) Insulin secretion and sensitivity in space flight: diabetogenic effects. Nutrition 18(10):842–848, PubMed PMID: 12361776PubMedGoogle Scholar
  184. Török Z, Tsvetkova NM, Balogh G, Horvath I, Nagy E, Penzes Z et al (2003) Heat shock protein coinducers with no effect on protein denaturation specifically modulate the membrane lipid phase. Proc Natl Acad Sci U S A 100(6):3131–3136, PubMed PMID: 12615993. Pubmed Central PMCID: 152258PubMedCentralPubMedGoogle Scholar
  185. Török Z, Crul T, Maresca B, Schütz GJ, Viana F, Dindia L, Piotto S, Brameshuber M, Balogh G, Péter M, Porta A, Trapani A, Gombos I, Glatz A, Gungor B, Peksel B, Vigh Jr L, Csoboz B, Horváth I, Vijayan MM, Hooper PL, Harwood J, Vigh L (2013) Plasma membranes as heat stress sensors: from lipid-controlled molecular switches to therapeutic applications. Biochim Biophys Acta. doi: 10.1016/j.bbamem.2013.12.015
  186. Touchberry CD, Gupte AA, Bomhoff GL, Graham ZA, Geiger PC, Gallagher PM (2012) Acute heat stress prior to downhill running may enhance skeletal muscle remodeling. Cell Stress Chaperones 17(6):693–705, PubMed PMID: 22589083. Pubmed Central PMCID: 3468678PubMedCentralPubMedGoogle Scholar
  187. Tsuei AC, Martinus RD (2012) Metformin induced expression of Hsp60 in human THP-1 monocyte cells. Cell Stress Chaperones 17(1):23–28, PubMed PMID: 21769504. Pubmed Central PMCID: 3227853PubMedCentralPubMedGoogle Scholar
  188. Tzanetakou IP, Katsilambros NL, Benetos A, Mikhailidis DP, Perrea DN (2012) “Is obesity linked to aging?”: adipose tissue and the role of telomeres. Ageing Res Rev 11(2):220–229, PubMed PMID: 22186032PubMedGoogle Scholar
  189. Ugurlucan M, Erer D, Karatepe O, Ziyade S, Haholu A, Gungor Ugurlucan F et al (2010) Glutamine enhances the heat shock protein 70 expression as a cardioprotective mechanism in left heart tissues in the presence of diabetes mellitus. Expert Opin Ther Targets 14(11):1143–1156, PubMed PMID: 20942745PubMedGoogle Scholar
  190. Vigh L, Torok Z, Balogh G, Glatz A, Piotto S, Horvath I (2007a) Membrane-regulated stress response: a theoretical and practical approach. Adv Exp Med Biol 594:114–131, PubMed PMID: 17205680PubMedGoogle Scholar
  191. Vigh L, Horvath I, Maresca B, Harwood JL (2007b) Can the stress protein response be controlled by ‘membrane-lipid therapy’? Trends Biochem Sci 32(8):357–363, PubMed PMID: 17629486PubMedGoogle Scholar
  192. Vígh L, Literáti PN, Horváth I, Török Z, Balogh G, Glatz A, Kovács E, Boros I, Ferdinándy P, Farkas B, Jaszlits L, Jednákovits A, Korányi L, Maresca B (1997) Bimoclomol: a nontoxic, hydroxylamine derivative with stress protein-inducing activity and cytoprotective effects. Nat Med 3:1150–1154Google Scholar
  193. Volloch V, Gabai VL, Rits S, Force T, Sherman MY (2000) HSP72 can protect cells from heat-induced apoptosis by accelerating the inactivation of stress kinase JNK. Cell Stress Chaperones 5(2):139–147, PubMed PMID: 11147965. Pubmed Central PMCID: 312900PubMedCentralPubMedGoogle Scholar
  194. Wang J, Rong X, Li W, Yang Y, Yamahara J, Li Y (2012) Rhodiola crenulata root ameliorates derangements of glucose and lipid metabolism in a rat model of the metabolic syndrome and type 2 diabetes. J Ethnopharmacol 142(3):782–788, PubMed PMID: 22683493PubMedGoogle Scholar
  195. Weijers RN (2012) Lipid composition of cell membranes and its relevance in type 2 diabetes mellitus. Curr Diabetes Rev 8(5):390–400, PubMed PMID: 22698081. Pubmed Central PMCID: 3474953PubMedCentralPubMedGoogle Scholar
  196. Wernstedt P, Sjostedt C, Ekman I, Du H, Thuomas KA, Areskog NH et al (2002) Adaptation of cardiac morphology and function to endurance and strength training. A comparative study using MR imaging and echocardiography in males and females. Scand J Med Sci Sports 12(1):17–25, PubMed PMID: 11985761PubMedGoogle Scholar
  197. Whitley D, Goldberg SP, Jordan WD (1999) Heat shock proteins: a review of the molecular chaperones. J Vasc Surg Off Publ Soc Vasc Surg Int Soc Cardiovasc Surg N Am Chapter 29(4):748–751, PubMed PMID: 10194511. Epub 1999/04/09. engGoogle Scholar
  198. Wiernsperger NF (1999) Membrane physiology as a basis for the cellular effects of metformin in insulin resistance and diabetes. Diabetes Metab 25(2):110–127, PubMed PMID: 10443322PubMedGoogle Scholar
  199. Wieten L, van der Zee R, Spiering R, Wagenaar-Hilbers J, van Kooten P, Broere F et al (2010) A novel heat-shock protein coinducer boosts stress protein Hsp70 to activate T cell regulation of inflammation in autoimmune arthritis. Arthritis Rheum 62(4):1026–1035, PubMed PMID: 20131272PubMedGoogle Scholar
  200. Wojtaszewski JF, Nielsen JN, Richter EA (2002) Invited review: effect of acute exercise on insulin signaling and action in humans. J Appl Physiol 93(1):384–392, PubMed PMID: 12070228PubMedGoogle Scholar
  201. Xu X, Wang P, Zhao Z, Cao T, He H, Luo Z et al (2011) Activation of transient receptor potential vanilloid 1 by dietary capsaicin delays the onset of stroke in stroke-prone spontaneously hypertensive rats. Stroke J Cereb Circ 42(11):3245–3251, PubMed PMID: 21852608Google Scholar
  202. Yokoyama K, Fukumoto K, Murakami T, Harada S, Hosono R, Wadhwa R et al (2002) Extended longevity of Caenorhabditis elegans by knocking in extra copies of hsp70F, a homolog of mot-2 (mortalin)/mthsp70/Grp75. FEBS Lett 516(1–3):53–57, PubMed PMID: 11959102. Epub 2002/04/18. engPubMedGoogle Scholar
  203. Yuan JP, Peng J, Yin K, Wang JH (2011) Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res 55(1):150–165, PubMed PMID: 21207519PubMedGoogle Scholar
  204. Zanuso S, Jimenez A, Pugliese G, Corigliano G, Balducci S (2010) Exercise for the management of type 2 diabetes: a review of the evidence. Acta Diabetol 47(1):15–22, PubMed PMID: 19495557. Epub 2009/06/06. engPubMedGoogle Scholar
  205. Zhu Z, Luo Z, Ma S, Liu D (2011) TRP channels and their implications in metabolic diseases. Pflugers Arch Eur J Physiol 461(2):211–223, PubMed PMID: 21110037Google Scholar
  206. Zierath JR (2002) Invited review: exercise training-induced changes in insulin signaling in skeletal muscle. J Appl Physiol 93(2):773–781, PubMed PMID: 12133891. Epub 2002/07/23. engPubMedGoogle Scholar
  207. Zisman A, Peroni OD, Abel ED, Michael MD, Mauvais-Jarvis F, Lowell BB et al (2000) Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med 6(8):924–928, PubMed PMID: 10932232PubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2014

Authors and Affiliations

  • Philip L. Hooper
    • 1
  • Gabor Balogh
    • 2
  • Eric Rivas
    • 3
    • 4
  • Kylie Kavanagh
    • 5
  • Laszlo Vigh
    • 2
  1. 1.Division of Endocrinology, Metabolism and Diabetes, Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraUSA
  2. 2.Institute of Biochemistry, Biological Research CenterHungarian Academy of SciencesSzegedHungary
  3. 3.Institute for Exercise and Environmental MedicineTexas Health Presbyterian Hospital of Dallas and University of Texas Southwestern Medical CenterDallasUSA
  4. 4.Department of KinesiologyTexas Woman’s UniversityDentonUSA
  5. 5.Department of PathologyWake Forest School of MedicineWinston–SalemUSA

Personalised recommendations