Skip to main content
Log in

Identification of signaling pathways modulated by RHBDD2 in breast cancer cells: a link to the unfolded protein response

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Rhomboid domain containing 2 (RHBDD2) was previously observed overexpressed and amplified in breast cancer samples. In order to identify biological pathways modulated by RHBDD2, gene expression profiles of RHBDD2 silenced breast cancer cells were analyzed using whole genome human microarray. Among the statistically significant overrepresented biological processes, we found protein metabolism—with the associated ontological terms folding, ubiquitination, and proteosomal degradationcell death, cell cycle, and oxidative phosphorylation. In addition, we performed an in silico analysis searching for RHBDD2 co-expressed genes in several human tissues. Interestingly, the functional analysis of these genes showed similar results to those obtained with the microarray data, with negative regulation of protein metabolism and oxidative phosphorylation as the most enriched gene ontology terms. These data led us to hypothesize that RHBDD2 might be involved in endoplasmic reticulum (ER) stress response. Thus, we specifically analyzed the unfolding protein response (UPR) of the ER stress process. We used a lentivirus-based approach for stable silencing of RHBDD2 mRNA in the T47D breast cancer cell line, and we examined the transcriptional consequences on UPR genes as well as the phenotypic effects on migration and proliferation processes. By employing dithiothreitol as an UPR inducer, we observed that cells with silenced RHBDD2 showed increased expression of ATF6, IRE1, PERK, CRT, BiP, ATF4, and CHOP (p < 0.01). We also observed that RHBDD2 silencing inhibited colony formation and decreased cell migration. Based on these studies, we hypothesize that RHBDD2 overexpression in breast cancer could represent an adaptive phenotype to the stressful tumor microenvironment by modulating the ER stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abba MC, Sun H, Hawkins KA, Drake JA, Hu Y, Nunez MI, Gaddis S, Shi T, Horvath S, Sahin A, Aldaz CM (2007) Breast cancer molecular signatures as determined by SAGE: correlation with lymph node status. Mol Cancer Res 5:881–890

    Article  CAS  PubMed  Google Scholar 

  • Abba MC, Lacunza E, Nunez MI, Colussi A, Isla-larrain M, Sahin A, Segal-Eiras A, Croce MV, Aldaz CM (2009) Rhomboid domain containing 2 (RHBDD2): a novel cancer-related gene amplified and overexpressed in invasive breast carcinomas. Biochim Biophys Acta: Mol Basis Dis 1792:988–997

    Article  CAS  Google Scholar 

  • Adams J (2003) The proteasome: structure, function, and role in the cell. Cancer Treat Rev 29:3–9

    Article  CAS  PubMed  Google Scholar 

  • Adler P, Kolde R, Kull M, Tkachenko A, Peterson H, Reimand J, Vilo J (2009) Mining for coexpression across hundreds of datasets using novel rank aggregation and visualization methods. Genome Biol 10(12):R139. doi:10.1186/gb-2009-10-12-r139

  • Adrain C, Strisovsky K, Zettl M, Hu L, Lemberg MK, Freeman M (2011) Mammalian EGF receptor activation by the rhomboid protease RHBDL2. EMBO Rep 12:421–427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Balakrishnan B, Sen D, Hareendran S, Roshini V, David S, Srivastava A, Jayandharan GR (2013) Activation of the cellular unfolded protein response by recombinant adeno-associated virus vectors. PLoS One 8(1):e53845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bergbold MK, Lemberg N (2013) Emerging role of rhomboid family proteins in mammalian biology and disease. Biochim Biophys Acta. doi:10.1016/j.bbamem.2013.03.025

    PubMed  Google Scholar 

  • Blaydon DC, Etheridge SL, Risk JM, Hennies HC, Gay LJ, Carroll R, Plagnol V, McRonald FE, Stevens HP, Spurr NK, Bishop DT, Ellis A, Jankowski J, Field JK, Leigh IM, South AP, Kelsell DP (2012) RHBDF2 mutations are associated with tylosis, a familial esophageal cancer syndrome. Am J Hum Genet 90(2):340–346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Breitling R, Armengaud P, Amtmann A, Herzyk P (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573(1–3):83–92

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti A, Chen AW, Varner JD (2011) A review of the mammalian unfolded protein response. Biotechnol Bioeng 108(12):2777–2793

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cipolat S, Rudka T, Hartmann D, Costa V, Serneels L, Craessaerts K, Metzger K, Frezza C, Annaert W, D’Adamio L, Derks C, Dejaegere T, Pellegrini L, D’Hooge R, Scorrano L, De Strooper B (2006) Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126:163–175

    Article  CAS  PubMed  Google Scholar 

  • Di Sano F, Ferraro E, Tufi R, Achsel T, Piacentini M, Cecconi F (2006) Endoplasmic reticulum stress induces apoptosis by an apoptosome-dependent but caspase 12-independent mechanism. J Biol Chem 281(5):2693–2700

    Article  CAS  PubMed  Google Scholar 

  • Etheridge SL, Brooke MA, Kelsell DP, Blaydon DC (2013) Rhomboid proteins: a role in keratinocyte proliferation and cancer. Cell Tissue Res 351(2):301–307

    Article  CAS  PubMed  Google Scholar 

  • Fleig L, Bergbold N, Sahasrabudhe P, Geiger B, Kaltak L, Lemberg MK (2012) Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins. Mol Cell 47(4):558–569

    Article  CAS  PubMed  Google Scholar 

  • Freeman M (2008) Rhomboid proteases and their biological functions. Annu Rev Genet 42:191–210

    Article  CAS  PubMed  Google Scholar 

  • Greenblatt EJ, Olzmann JA, Kopito RR (2011) Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant alpha-1 antitrypsin from the endoplasmic reticulum. Nature Struct Mol Biol 18:1147–1153

    Article  CAS  Google Scholar 

  • Guerriero CJ, Brodsky JL (2012) The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. Physiol Rev 92(2):537–576

    Article  CAS  PubMed  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Kviecinski MR, Pedrosa RC, Felipe KB, Farias MS, Glorieux C, Valenzuela M, Sid B, Benites J, Valderrama JA, Verrax J, Buc Calderon P (2012) Inhibition of cell proliferation and migration by oxidative stress from ascorbate-driven juglone redox cycling in human bladder-derived T24 cells. Biochem Biophys Res Commun 421:268–273

    Google Scholar 

  • Lacunza E, Canzoneri R, Rabassa ME, Zwenger A, Segal-Eiras A, Croce MV, Abba MC (2012) RHBDD2: a 5-fluorouracil responsive gene overexpressed in the advanced stages of colorectal cancer. Tumor Biol 33(6):2393–2399

    Article  CAS  Google Scholar 

  • Li X, Zhang K, Li Z (2011) Unfolded protein response in cancer: the physician’s perspective. J Hematol Oncol 4:8. doi:10.1186/1756-8722-4-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu CY, Kaufman RJ (2003) The unfolded protein response. J Cell Sci 116:1861–1862

    Article  CAS  PubMed  Google Scholar 

  • McQuibban GA, Saurya S, Freeman M (2003) Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423(6939):537–541

    Article  CAS  PubMed  Google Scholar 

  • Oda Y, Okada T, Yoshida H, Kaufman RJ, Nagata K, Mori K (2006) Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. J Cell Biol 172(3):383–393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olzmann JA, Richter CM, Kopito RR (2013) Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover. Proc Natl Acad Sci U S A 110(4):1345–1350

    Article  PubMed Central  PubMed  Google Scholar 

  • Rongjian S, Yuhua C, Jindan S (2003) The effects of the unfolded protein response (UPR) on cell migration in organogenesis in vitro. Chinese Journal of Cell Biology 25(6):380–384

    Google Scholar 

  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    CAS  PubMed  Google Scholar 

  • Scriven P, Coulson S, Haines R, Balasubramanian S, Cross S, Wyld L (2009) Activation and clinical significance of the unfolded protein response in breast cancer. Br J Cancer 101(10):1692–1698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smid M, Dorssers LCJ, Jenster G (2003) Venn mapping: clustering of heterologous microarray data based on the number of co-occurring differentially expressed genes. Biogeosciences 19:2065–2071

    CAS  Google Scholar 

  • Sturtevant MA, Roark M, Bier E (1993) The Drosophila rhomboid gene mediates the localized formation of wing veins and interacts genetically with components of the EGF-R signaling pathway. Genes Dev 7(6):961–73

    Google Scholar 

  • Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7(9):880–885

    Google Scholar 

  • Urban S, Freeman M (2003) Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain. Mol Cell 11(6):1425–1434

    Article  CAS  PubMed  Google Scholar 

  • Whitworth AJ, Lee JR, Ho VM, Flick R, Chowdhury R, McQuibban GA (2008) Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson’s disease factors Pink1 and Parkin. Dis Model Mech 1(2–3):168–174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yadunandam AK, Yoon JS, Seong YA, Oh CW, Kim GD (2012) Prospective impact of 5-FU in the induction of endoplasmic reticulum stress, modulation of GRP78 expression and autophagy in Sk-Hep1 cells. Int J Oncol 41(3):1036–1042

    CAS  PubMed  Google Scholar 

  • Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107(7):881–891

    Article  CAS  PubMed  Google Scholar 

  • Zou H, Thomas SM, Yan Z, Grandis JR, Vogt A, Li L (2009) Human rhomboid family-1 gene RHBDF1 participates in GPCR-mediated transactivation of EGFR growth signals in head and neck squamous cancer cells. FASEB J 23:425–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by CONICET (PIP no. 2131) and FONCYT (PICT 0275) grants (Abba MC).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Abba.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 166 kb)

ESM 2

(XLS 274 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacunza, E., Rabassa, M.E., Canzoneri, R. et al. Identification of signaling pathways modulated by RHBDD2 in breast cancer cells: a link to the unfolded protein response. Cell Stress and Chaperones 19, 379–388 (2014). https://doi.org/10.1007/s12192-013-0466-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-013-0466-3

Keywords

Navigation