Cell Stress and Chaperones

, Volume 19, Issue 3, pp 355–366 | Cite as

Sublethal heat shock induces premature senescence rather than apoptosis in human mesenchymal stem cells

  • Larisa L. Alekseenko
  • Victoria I. Zemelko
  • Alisa P. Domnina
  • Olga G. Lyublinskaya
  • Valery V. Zenin
  • Nataly A. Pugovkina
  • Irina V. Kozhukharova
  • Alexandra V. Borodkina
  • Tatiana M. Grinchuk
  • Irina I. Fridlyanskaya
  • Nikolay N. Nikolsky
Original Paper


Stem cells in adult organism are responsible for cell turnover and tissue regeneration. The study of stem cell stress response contributes to our knowledge on the mechanisms of damaged tissue repair. Previously, we demonstrated that sublethal heat shock (HS) induced apoptosis in human embryonic stem cells. This study aimed to investigate HS response of human adult stem cells. Human mesenchymal stem cells (MSCs) cultivated in vitro were challenged with sublethal HS. It was found that sublethal HS did not affect the cell viability assessed by annexin V/propidium staining. However, MSCs subjected to severe HS exhibited features of stress-induced premature senescence (SIPS): irreversible cell cycle arrest, altered morphology, increased expression of senescence-associated β-galactosidase (SA-β-gal) activity, and induction of cyclin-dependent kinase inhibitor p21 protein. High level of Hsp70 accumulation induced by sublethal HS did not return to the basal level, at least, after 72 h of the cell recovery when most cells exhibited SIPS hallmarks. MSCs survived sublethal HS, and resumed proliferation sustained the properties of parental MSCs: diploid karyotype, replicative senescence, expression of the cell surface markers, and capacity for multilineage differentiation. Our results showed for the first time that in human MSCs, sublethal HS induced premature senescence rather than apoptosis or necrosis. MSC progeny that survived sublethal HS manifested stem cell properties of the parental cells: limited replicative life span and multilineage capacity.


Adult stem cells Heat shock Heat shock proteins (Hsp) Premature senescence 



The work was supported by the Russian Foundation for Basic Research (project 11-04-12077), Program of Russian Academy of Sciences “Molecular and Cellular Biology,” and RF President Grant 4957.2012.4.

Conflict of interest



  1. Alekseenko LL, Zemelko VI, Zenin VV, Pugovkina NA, Kozhukharova IV, Kovaleva ZV, Grinchuk TM, Fridlyanskaya II, Nikolsky NN (2012) Heat shock induces apoptosis in human embryonic stem cells but a premature senescence phenotype in their differentiated progeny. Cell Cycle 11:3260–3269PubMedCentralPubMedCrossRefGoogle Scholar
  2. Allickson J, Xiang C (2012) Human adult stem cells from menstrual blood and endometrial tissue. J Zhejiang Univ Sci B 13:419–420PubMedCentralPubMedCrossRefGoogle Scholar
  3. Altanerova V, Horvathova E, Matuskova M, Kucerova L, Altaner C (2009) Genotoxic damage of human adipose-tissue derived mesenchymal stem cells triggers their terminal differentiation. Neoplasma 56:542–547PubMedCrossRefGoogle Scholar
  4. Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2:313–319PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bladier C, Wolvetang EJ, Hutchinson P, de Haan JB, Kola I (1997) Response of a primary human fibroblast cell line to H2O2: senescence-like growth arrest or apoptosis? Cell Growth Differ 8:589–598PubMedGoogle Scholar
  6. Brandl A, Hartmann A, Bechmann V, Graf B, Nerlich M, Angele P (2011a) Oxidative stress induces senescence in chondrocytes. J Orthop Res 29:1114–1120PubMedCrossRefGoogle Scholar
  7. Brandl A, Meyer M, Bechmann V, Nerlich M, Angele P (2011b) Oxidative stress induces senescence in human mesenchymal stem cells. Exp Cell Res 317:1541–1547PubMedCrossRefGoogle Scholar
  8. Brederlau A, Correia AS, Anisimov SV, Elmi M, Paul G, Roybon L, Morizane A, Bergquist F et al (2006) Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson's disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells 24:1433–1440PubMedCrossRefGoogle Scholar
  9. Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278–294PubMedCrossRefGoogle Scholar
  10. Chen JH, Stoeber K, Kingsbury S, Ozanne SE, Williams GH, Hales CN (2004) Loss of proliferative capacity and induction of senescence in oxidatively stressed human fibroblasts. J Biol Chem 279:49439–49446PubMedCrossRefGoogle Scholar
  11. Chen J, Shi ZD, Ji X, Morales J, Zhang J, Kaur N, Wang S (2013) Enhanced osteogenesis of human mesenchymal stem cells by periodic heat shock in self-assembling. Tissue Eng Part A 19:716–728PubMedCentralPubMedCrossRefGoogle Scholar
  12. Cho JA, Park H, Kim HK, Lim EH, Seo SW, Choi JS, Lee KW (2009) Hyperthermia-treated mesenchymal stem cells exert antitumor effects on human carcinoma cell line. Cancer 115:311–323PubMedCrossRefGoogle Scholar
  13. Cmielova J, Havelek R, Soukup T, Jiroutová A, Visek B, Suchánek J et al (2012) Gamma radiation induces senescence in human adult mesenchymal stem cells from bone marrow and periodontal ligaments. Int J Radiat Biol 88:393–404PubMedCrossRefGoogle Scholar
  14. Concannon CG, Fitzgerald U, Holmberg CI, Szegezdi E, Sistonen L, Samali A (2005) CD95-mediated alteration in Hsp70 levels is dependent on protein stabilization. Cell Stress Chaperones 10:59–65PubMedCentralPubMedCrossRefGoogle Scholar
  15. da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213PubMedCrossRefGoogle Scholar
  16. Dmitrieva RI, Minullina IR, Bilibina AA, Tarasova OV, Anisimov SV, Zaritskey AY (2012) Bone marrow- and subcutaneous adipose tissue-derived mesenchymal stem cells: differences and similarities. Cell Cycle 11:377–383PubMedCrossRefGoogle Scholar
  17. Dolan EB, Haugh MG, Tallon D, Casey C, McNamara LM (2012) Heat-shock-induced cellular responses to temperature elevations occurring during orthopaedic cutting. J R Soc Interface 9:3503–3513PubMedCentralPubMedCrossRefGoogle Scholar
  18. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317PubMedCrossRefGoogle Scholar
  19. Goligorsky MS, Chen J, Patschan S (2009) Stress-induced premature senescence of endothelial cells: a perilous state between recovery and point of no return. Curr Opin Hematol 16:215–219PubMedCrossRefGoogle Scholar
  20. Heneidi S, Simerman AA, Keller E, Singh P, Li X et al (2013) Awakened by сellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue. PLoS ONE 8(6):e64752PubMedCentralPubMedCrossRefGoogle Scholar
  21. Hronik-Tupaj M, Rice WL, Cronin-Golomb M, Kaplan DL, Georgakoudi I (2011) Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields. Biomed Eng Online 10:19CrossRefGoogle Scholar
  22. Husein KS, Thiemermann C (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28:585–596Google Scholar
  23. Jun JI, Lau LF (2010) Cellular senescence controls fibrosis in wound healing. Aging 2:627–631PubMedCentralPubMedGoogle Scholar
  24. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563PubMedCrossRefGoogle Scholar
  25. Kim G, Meriin AB, Gabai VL, Christians E, Benjamin I, Wilson A, Wolozin B, Sherman MY (2012) The heat shock transcription factor Hsf1 is downregulated in DNA damage-associated senescence, contributing to the maintenance of senescence phenotype. Aging Cell 11:617–627PubMedCentralPubMedCrossRefGoogle Scholar
  26. Ko E, Lee KY, Hwang DS (2012) Human umbilical cord blood-derived mesenchymal stem cells undergo cellular senescence in response to oxidative stress. Stem Cells Dev 21:1877–1886PubMedCentralPubMedCrossRefGoogle Scholar
  27. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, Yee H, Zender L, Lowe SW (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 34:657–667CrossRefGoogle Scholar
  28. Kuroda Y, Kitada M, Wakao S, Nishikawa K et al (2010) Unique multipotent cells in adult human mesenchymal cell populations. PNAS 107:8639–8643PubMedCentralPubMedCrossRefGoogle Scholar
  29. Lasunskaia EB, Fridlianskaia II, Guzhova IV, Bozhkin VM, Margulis BA (1997) Accumulation of major stress protein 70 kDa protects myeloid and lymphoid cells from death by apoptosis. Apoptosis 2:156–163PubMedCrossRefGoogle Scholar
  30. Lasunskaia EB, Fridlianskaia I, Arnholdt AV, Kanashiro M, Guzhova I, Margulis B (2010) Sub-lethal heat shock induces plasma membrane translocation of 70-kDa heat shock protein in viable, but not in apoptotic, U-937 leukaemia cells. APMIS 118:179–187PubMedCrossRefGoogle Scholar
  31. Li S, Chien S, Brånemark PI (1999) Heat shock-induced necrosis and apoptosis in osteoblasts. J Orthop Res 17:891–899PubMedCrossRefGoogle Scholar
  32. Liu SP, Ding DC, Wang HJ, Su CY, Lin SZ, Li H, Shyu WC (2010) Nonsenescent Hsp27-upregulated MSCs implantation promotes neuroplasticity in stroke model. Cell Transplant 19:1261–1279PubMedCrossRefGoogle Scholar
  33. Oh S, Lee E, Lee J, Lim Y, Kim J, Woo S (2008) Comparison of the effects of 40% oxygen and two atmospheric absolute air pressure conditions on stress-induced premature senescence of normal human diploid fibroblasts. Cell Stress Chaperones 13:447–458PubMedCentralPubMedCrossRefGoogle Scholar
  34. Orciani M, Gorbi S, Benedetti M, Di Benedetto G, Mattioli-Belmonte M, Regoli F, Di Primio R (2010) Oxidative stress defense in human-skin-derived mesenchymal stem cells versus human keratinocytes: different mechanisms of protection and cell selection. Free Radic Biol Med 49:830–838PubMedCrossRefGoogle Scholar
  35. Paul G, Ozen I, Christophersen NS, Reinbothe T, Bengzon J et al (2012) The adult human brain harbors multipotent perivascular mesenchymal stem cells. PLoS ONE 7(4):e35577PubMedCentralPubMedCrossRefGoogle Scholar
  36. Pera MF, Reubinoff B, Trounson A (2000) Human embryonic stem cells. J Cell Sci 113:5–10PubMedGoogle Scholar
  37. Ramkisoensing AA, Pijnappels DA, Askar SFA, Passier R, Swildens J et al (2011) Human embryonic and fetal mesenchymal stem cells differentiate toward three different cardiac lineages in contrast to their adult counterparts. PLoS ONE 6(9):e24164PubMedCentralPubMedCrossRefGoogle Scholar
  38. Restall IJ, Lorimer IAJ (2010) Induction of premature senescence by Hsp90 inhibition in small cell lung cancer. PLoS ONE 5(6):e11076PubMedCentralPubMedCrossRefGoogle Scholar
  39. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404PubMedCrossRefGoogle Scholar
  40. Rezai Rad M, Wise GE, Brooks H, Flanagan MB, Yao S (2013) Activation of proliferation and differentiation of dental follicle stem cells (DFSCs) by heat stress. Cell Prolif 46:58–66PubMedCrossRefGoogle Scholar
  41. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556PubMedCentralPubMedCrossRefGoogle Scholar
  42. Samali A, Holmberg CI, Sistonen L, Orrenius S (1999) Thermotolerance and cell death are distinct cellular responses to stress: dependence on heat shock proteins. FEBS Lett 461:306–310PubMedCrossRefGoogle Scholar
  43. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas E, Gay R, Klimanskaya I, Lanza R (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379:713–720PubMedCrossRefGoogle Scholar
  44. Sherman M (2010) Major heat shock protein Hsp72 controls oncogene-induced senescence. Ann N Y Acad Sci 1197:152–157PubMedCrossRefGoogle Scholar
  45. Shui C, Scutt A (2001) Mild heat shock induces proliferation, alkaline phosphatase activity, and mineralization in human bone marrow stromal cells and Mg-63. Cells In Vitro J Bone Miner Res 16:731–741CrossRefGoogle Scholar
  46. Silver JT, Noble TG (2012) Regulation of survival gene hsp70. Cell Stress Chaperones 1:1–9CrossRefGoogle Scholar
  47. Sokolov M, Neumann R (2013) Lessons learned about human stem cell responses to ionizing radiation exposures: a long road still head of us. Int J Mol Sci 14:15695–15723PubMedCentralPubMedCrossRefGoogle Scholar
  48. Spallarossa P, Altieri P, Barisione C, Passalacqua M et al (2010) p38 MAPK and JNK antagonistically control senescence and cytoplasmic p16INK4A expression in doxorubicin-treated endothelial progenitor cells. PLoS ONE 5(12):e15583PubMedCentralPubMedCrossRefGoogle Scholar
  49. Spitzer TR (2001) Engraftment syndrome following hematopoietic stem cell transplantation. Bone Marrow Transplant 27:893–898PubMedCrossRefGoogle Scholar
  50. Stolberg S, McCloskey KE (2009) Can shear stress direct stem cell fate? Biotechnol Progress 25:10–19CrossRefGoogle Scholar
  51. Stolzing A, Jones E, McGonagle D, Scutt A (2008) Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev 129:163–173PubMedCrossRefGoogle Scholar
  52. Strub GM, Depcrynski A, Elmore LW, Holt SE (2008) Recovery from stress is a function of age and telomere length. Cell Stress Chaperones 4:475–482CrossRefGoogle Scholar
  53. Suzuki M, Boothman DA (2008) Stress-induced premature senescence (SIPS)—influence of SIPS on radiotherapy. J Radiat Res 49:105–112PubMedCrossRefGoogle Scholar
  54. Toussaint O, Medrano EE, von Zglinicki T (2000) Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 35:927–945PubMedCrossRefGoogle Scholar
  55. Tower J (2012) Stress and stem cells. Wiley Interdiscip Rev Dev Biol 1:789–802PubMedCrossRefGoogle Scholar
  56. Yamaguchi T, Suzuki T, Arai H, Tanabe S, Atomi Y (2010) Continuous mild heat stress induces differentiation of mammalian myoblasts, shifting fiber type from fast to slow. Am J Physiol Cell Physiol 298:140–148CrossRefGoogle Scholar
  57. Yao S, Gutierrez DL, He H, Dai Y, Liu D, Wise GE (2011) Proliferation of dental follicle-derived cell populations in heat-stress conditions. Cell Prolif 44:486–493PubMedCentralPubMedCrossRefGoogle Scholar
  58. Zemelko VI, Grinchuk TM, Domnina AP, Artzibasheva IV, Zenin VV, Kirsanov AA, Bichevaia NK, Korsak VS, Nikolsky NN (2011) Multipotent mesenchymal stem cells of desquamated endometrium: isolation, characterization, and application as a feeder layer for maintenance of human embryonic stem cells. Tsitologiia 53:919–929 (in Russian)Google Scholar
  59. Zhang Y, Herbert BS, Rajashekhar G, Ingram DA, Yoder MC, Clauss M, Rehman J (2009) Premature senescence of highly proliferative endothelial progenitor cells is induced by tumor necrosis factor-alpha via the p38 mitogen-activated protein kinase pathway. FASEB J 23:1358–1365PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2013

Authors and Affiliations

  • Larisa L. Alekseenko
    • 1
  • Victoria I. Zemelko
    • 1
  • Alisa P. Domnina
    • 1
  • Olga G. Lyublinskaya
    • 1
  • Valery V. Zenin
    • 1
  • Nataly A. Pugovkina
    • 1
  • Irina V. Kozhukharova
    • 1
  • Alexandra V. Borodkina
    • 1
  • Tatiana M. Grinchuk
    • 1
  • Irina I. Fridlyanskaya
    • 1
  • Nikolay N. Nikolsky
    • 1
  1. 1.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations