Cell Stress and Chaperones

, Volume 19, Issue 2, pp 263–270

Exercise reduces cellular stress related to skeletal muscle insulin resistance

  • Mariana Aguiar de Matos
  • Vinícius de Oliveira Ottone
  • Tamiris Campos Duarte
  • Pâmela Fiche da Matta Sampaio
  • Karine Beatriz Costa
  • Cheyenne Alves Fonseca
  • Miguel Pontes Correa Neves
  • Suzanne Maria Schneider
  • Pope Moseley
  • Cândido Celso Coimbra
  • Flávio de Castro Magalhães
  • Etel Rocha-Vieira
  • Fabiano Trigueiro Amorim
Original Paper

Abstract

This study sought to evaluate the effects of a single session of exercise on the expression of Hsp70, of c-jun N-terminal kinase (JNK), and insulin receptor substrate 1 serine 612 (IRSser612) phosphorylation in the skeletal muscle of obese and obese insulin-resistant patients. Twenty-seven volunteers were divided into three experimental groups (eutrophic insulin-sensitive, obese insulin-sensitive, and obese insulin-resistant) according to their body mass index and the presence of insulin resistance. The volunteers performed 60 min of aerobic exercise on a cycle ergometer at 60 % of peak oxygen consumption. M. vastus lateralis samples were obtained before and after exercise. The protein expressions were evaluated by Western blot. Our findings show that compared with paired eutrophic controls, obese subjects have higher basal levels of p-JNK (100 ± 23 % vs. 227 ± 67 %, p = 0.03) and p-IRS-1ser612 (100 ± 23 % vs. 340 ± 67 %, p < 0.001) and reduced HSP70 (100 ± 16 % vs. 63 ± 12 %, p < 0.001). The presence of insulin resistance results in a further increase in p-JNK (460 ± 107 %, p < 0.001) and a decrease in Hsp70 (46 ± 5 %, p = 0.006), but p-IRS-1ser612 levels did not differ from obese subjects (312 ± 73 %, p > 0.05). Exercise reduced p-JNK in obese insulin-resistant subjects (328 ± 33 %, p = 0.001), but not in controls or obese subjects. Furthermore, exercise reduced p-IRS-1ser612 for both obese (122 ± 44 %) and obese insulin-resistant (185 ± 36 %) subjects. A main effect of exercise was observed in HSP70 (p = 0.007). We demonstrated that a single session of exercise promotes changes that characterize a reduction in cellular stress that may contribute to exercise-induced increase in insulin sensitivity.

Keywords

Exercise Insulin resistance Obesity Heat shock protein Cellular stress 

References

  1. Aguirre V, Uchida T, Yenush L, Davis R, White MF (2000) The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 275:9047–9054PubMedCrossRefGoogle Scholar
  2. Bandyopadhyay GK, Yu JG, Ofrecio J, Olefsky JM (2005) Increased p85/55/50 expression and decreased phosphatidylinositol 3-kinase activity in insulin-resistant human skeletal muscle. Diabetes 54:2351–2359PubMedCrossRefGoogle Scholar
  3. Bergström J, Hultman E (1966) Muscle glycogen synthesis after exercise: an enhancing factor localized to the muscle cells in man. Nature London 210:309–310PubMedCrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  5. Brazilian Ministry of Health. Vigitel Brazil 2010: surveillance of risk and protective factors for chronic diseases through telephone survey. Brasilia: Office of Strategic and Participative Management, Bureau of Health Surveillance, Ministry of Health, 2011. p. 37Google Scholar
  6. Christ-Roberts CY, Pratipanawatr T, Pratipanawatr W, Berria R, Belfort R, Mandarino LJ (2003) Increased insulin receptor signaling and glycogen synthase activity contribute to the synergistic effect of exercise on insulin action. J Appl Physiol 95:2519–2529PubMedGoogle Scholar
  7. Chung J, Nguyen AK, Henstridge DC, Holmes AG, Chan MH, Mesa JL, Lancaster GI, Southgate RJ, Bruce CR, Duffy SJ, Horvath I, Mestril R, Watt MJ, Hooper PL, Kingwell BA, Vigh L, Hevener A, Febbraio MA (2008) HSP72 protects against obesity-induced insulin resistance. PNAS 105:1739–1744PubMedCrossRefGoogle Scholar
  8. Colditz GA, Willett WC, Stampfer MJ, Manson JE, Hennekens CH, Arky RA, Speizer FE (1990) Weight as a risk factor for clinical diabetes in women. Am J Epidemiol 132:501–513PubMedGoogle Scholar
  9. Daviau A, Proulx R, Robitaille K, Di Fruscio M, Tanguay RM, Landry J, Patterson C, Durocher Y, Blouin R (2006) Down-regulation of the mixed-lineage dual leucine zipper-bearing kinase by heat shock protein 70 and its co-chaperone CHIP. J Biol Chem 281:31467–31477PubMedCrossRefGoogle Scholar
  10. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252PubMedCrossRefGoogle Scholar
  11. De Fea K, Roth RA (1997) Protein kinase C modulation of insulin receptor substrate-1 tyrosine phosphorylation requires serine 612. Biochemistry 36:12939–12947PubMedCrossRefGoogle Scholar
  12. Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, Singh GM, Gutierrez HR, Lu Y, Bahalim AN, Farzadfar F, Riley LM, Ezzati M (2011) National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 377:557–567PubMedCrossRefGoogle Scholar
  13. Garetto LP, Richter EA, Goodman MN, Ruderman NB (1984) Enhanced muscle glucose metabolism after exercise in the rat: the two phases. Am J Physiol Endocrinol Metab 246:E471–E475Google Scholar
  14. Geiger PC, Gupte AA (2011) Heat shock proteins are important mediators of skeletal muscle insulin sensitivity. Exerc Sport Sci Rev 39:34–42PubMedCentralPubMedCrossRefGoogle Scholar
  15. Geloneze B, Repetto EM, Geloneze SR, Tambascia MA, Ermetice MN (2006) The threshold value for insulin resistance (HOMAIR) in an admixtured population IR in the Brazilian Metabolic Syndrome Study. Diabetes Res Clin Pract 72:219–220PubMedCrossRefGoogle Scholar
  16. Gupte AA, Bomhoff GL, Swerdlow RH, Geiger PC (2009) Heat treatment improves glucose tolerance and prevents skeletal muscle insulin resistance in rats fed a high-fat diet. Diabetes 58:567–578PubMedCrossRefGoogle Scholar
  17. Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336PubMedCrossRefGoogle Scholar
  18. Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140:900–917PubMedCentralPubMedCrossRefGoogle Scholar
  19. Kline MP, Morimoto RI (1997) Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol Cell Biol 17:2107–2115PubMedCentralPubMedGoogle Scholar
  20. Kurucz I, Morva A, Vaag A, Eriksson K, Huang X, Groop L, Koranyi L (2002) Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance. Diabetes 51:1102–1109PubMedCrossRefGoogle Scholar
  21. Lee YH, Giraud J, Davis RJ, White MF (2003) c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem 278:2896–2902PubMedCrossRefGoogle Scholar
  22. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRefGoogle Scholar
  23. Meriin AB, Yaglom JA, Gabai VL, Zon L, Ganiatsas S, Mosser DD, Zon L, Sherman MY (1999) Protein-damaging stresses activate c-Jun N-terminal kinase via inhibition of its dephosphorylation: a novel pathway controlled by HSP72. Mol Cell Biol 19:2547–2555PubMedCentralPubMedGoogle Scholar
  24. Myers J, Bellin D (2000) Ramp exercise protocols for clinical and cardiopulmonary exercise testing. Sports Med 30:23–29PubMedCrossRefGoogle Scholar
  25. O'Leary VB, Marchetti CM, Krishman RK, Stetzer BP, Gonzalez F, Kirwan JP (2006) Exercise-induced reversal of insulin resistance in obese elderly is associated with reduced visceral fat. J Appl Physiol 100:1584–1589PubMedCrossRefGoogle Scholar
  26. Park HS, Lee JS, Huh SH, Seo JS, Choi EJ (2001) Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. EMBO J 20:446–456PubMedCrossRefGoogle Scholar
  27. Poole DC, Wilkerson DP, Jones AM (2008) Validity of criteria for establishing maximal O2 uptake during ramp exercise tests. Eur J Appl Physiol 102:403–410PubMedCrossRefGoogle Scholar
  28. Richter EA, Mikines KJ, Galbo H, Kiens B (1989) Effect of exercise on insulin action in human skeletal muscle. J Appl Physiol 66:876–888PubMedGoogle Scholar
  29. Ropelle ER, Pauli JR, Prada PO, de Souza CT, Picardi PK, Faria MC, Cintra DE, Fernandes MF, Flores MB, Velloso LA, Saad MJ, Carvalheira JB (2006) Reversal of diet-induced insulin resistance with a single bout of exercise in the rat: the role of PTP1B and IRS-1 serine phosphorylation. J Physiol 577:997–1007PubMedCrossRefGoogle Scholar
  30. Sasai H, Sairenchi T, Iso H, Irie F, Otaka E, Tanaka K, Ota H, Muto T (2010) Relationship between obesity and incident diabetes in middle-aged and older Japanese adults: the Ibaraki Prefectural Health Study. Mayo Clin Proc 85:36–40PubMedCrossRefGoogle Scholar
  31. Schenk S, Horowitz JF (2007) Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid-induced insulin resistance. J Clin Invest 117:1690–1698PubMedCentralPubMedCrossRefGoogle Scholar
  32. Shafrir E (1996) Development and consequences of insulin resistance: lessons from animals with hyperinsulinaemia. Diabetes Metab 22:122–131PubMedGoogle Scholar
  33. Simar D, Jacques A, Caillaud C (2012) Heat shock proteins induction reduces stress kinases activation, potentially improving insulin signalling in monocytes from obese subjects. Cell Stress Chaperones 17:615–621PubMedCentralPubMedCrossRefGoogle Scholar
  34. Sinha R, Fisch G, Teague BRN, Tamborlane WV, Banyas RNB, Allen KRN, Savoye MRD, Rieger VMD, Taksali SMPH, Barbetta GRD, Sherwin RSE, Caprio S (2002) Prevalence of impaired glucose tolerance among children and adolescents with marked obesity. N Engl J Med 346:802–810PubMedCrossRefGoogle Scholar
  35. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS (1997) Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389:610–614PubMedCrossRefGoogle Scholar
  36. World Health Organization (2013) Global Health Observatory. Obesity. http://www.who.int/gho/ncd/risk_factors/obesity_text/en/index.html. Accessed 13 May 2013
  37. Yi Z, Langlais P, De Filippis EA, Luo M, Flynn CR, Schroeder S, Weintraub ST, Mapes R, Mandarino LJ (2007) Global assessment of regulation of phosphorylation of insulin receptor substrate-1 by insulin in vivo in human muscle. Diabetes 56:1508–1516PubMedCrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2013

Authors and Affiliations

  • Mariana Aguiar de Matos
    • 1
  • Vinícius de Oliveira Ottone
    • 1
  • Tamiris Campos Duarte
    • 1
  • Pâmela Fiche da Matta Sampaio
    • 1
  • Karine Beatriz Costa
    • 1
  • Cheyenne Alves Fonseca
    • 1
  • Miguel Pontes Correa Neves
    • 1
  • Suzanne Maria Schneider
    • 2
  • Pope Moseley
    • 2
  • Cândido Celso Coimbra
    • 3
  • Flávio de Castro Magalhães
    • 1
  • Etel Rocha-Vieira
    • 1
  • Fabiano Trigueiro Amorim
    • 1
  1. 1.Exercise Physiology Laboratory, Healthy and Biological Sciences FacultyFederal University of Jequitinhonha and Mucuri ValleysDiamantinaBrazil
  2. 2.University of New MexicoAlbuquerqueUSA
  3. 3.Endocrinology Laboratory, Biological Sciences InstituteFederal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations