Cell Stress and Chaperones

, Volume 19, Issue 1, pp 1–13

Inflammatory stress and sarcomagenesis: a vicious interplay

Mini Review


Chronic inflammation represents one of the hallmarks of cancer, but its role in sarcomagenesis has long been overlooked. Sarcomas are a rare and heterogeneous group of tumors of mesenchymal origin accounting for less than 1 % of cancers in adults but 21 % of cancers in the pediatric population. Sarcomas are associated with bad prognosis, and their management requires a multidisciplinary team approach. Several lines of evidence indicate that inflammation has been implicated in sarcomagenesis leading to the activation of the key transcription factors HIF-1, NF- κB, and STAT-3 involved in a complex inflammatory network. In the past years, an increasing number of new targets have been identified in the treatment of sarcomas leading to the development of new drugs that aim to interrupt the vicious connection between inflammation and sarcomagenesis. This article makes a brief overview of preclinical and clinical evidence of the molecular pathways involved in the inflammatory stress response in sarcomagenesis and the most targeted therapies.


Sarcoma Inflammation Epidemiology Genetics Therapy Signaling pathways 


  1. Abraham J, Nelon LD, Kubicek CB et al. (2011) Preclinical testing of erlotinib in a transgenic alveolar rhabdomyosarcoma mouse model. Sarcoma 2011:130484. doi:10.1155/2011/130484
  2. Aggarwal BB, Gehlot P (2009) Inflammation and cancer: how friendly is the relationship for cancer patients? Curr Opin Pharmacol 9:351–369PubMedGoogle Scholar
  3. Agulnik M (2012) New developments in mammalian target of rapamycin inhibitors for the treatment of sarcoma. Cancer 118:1486–1497PubMedGoogle Scholar
  4. Akimoto R, Pawankar R, Yagi T et al (2000) Acquired and congenital cholesteatoma: determination of tumor necrosis factor-alpha, intercellular adhesion molecule-1, interleukin-1-alpha and lymphocyte functional antigen-1 in the inflammatory process. ORL J Otorhinolaryngol Relat Spec 62:257–265PubMedGoogle Scholar
  5. Ancrile B, Lim KH, Counter CM (2007) Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev 21:1714–1719PubMedGoogle Scholar
  6. Arlt A, Schafer H (2011) Role of the immediate early response 3 (IER3) gene in cellular stress response, inflammation and tumorigenesis. Eur J Cell Biol 90:545–552PubMedGoogle Scholar
  7. Atai NA, Bansal M, Lo C et al (2011) Osteopontin is up-regulated and associated with neutrophil and macrophage infiltration in glioblastoma. Immunology 132:39–48PubMedGoogle Scholar
  8. Bache M, Kappler M, Wichmann H et al (2010) Elevated tumor and serum levels of the hypoxia-associated protein osteopontin are associated with prognosis for soft tissue sarcoma patients. BMC Cancer 10:132PubMedGoogle Scholar
  9. Bai Y, Li J, Fang B et al (2012) Phosphoproteomics identifies driver tyrosine kinases in sarcoma cell lines and tumors. Cancer Res 72:2501–2511PubMedGoogle Scholar
  10. Balkwill FR, Mantovani A (2012) Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol 22:33–40PubMedGoogle Scholar
  11. Benassi MS, Gamberi G, Magagnoli G et al (2001) Metalloproteinase expression and prognosis in soft tissue sarcomas. Ann Oncol 12:75–80PubMedGoogle Scholar
  12. Bond GL, Hu W, Bond EE et al (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602PubMedGoogle Scholar
  13. Bruynzeel AM, Niessen HW, Bronzwaer JG et al (2007) The effect of monohydroxyethylrutoside on doxorubicin-induced cardiotoxicity in patients treated for metastatic cancer in a phase II study. Br J Cancer 97:1084–1089PubMedGoogle Scholar
  14. Butrynski JE, D'Adamo DR, Hornick JL et al (2010) Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N Engl J Med 363:1727–1733PubMedGoogle Scholar
  15. Butz H, Liko I, Czirjak S et al (2010) Down-regulation of Wee1 kinase by a specific subset of microRNA in human sporadic pituitary adenomas. J Clin Endocrinol Metab 95:E181–E191PubMedGoogle Scholar
  16. Calvert GT, Randall RL, Jones KB et al (2012) At-risk populations for osteosarcoma: the syndromes and beyond. Sarcoma 2012:152382. doi:10.1155/2012/152382
  17. Cancian L, Hansen A, Boshoff C (2013) Cellular origin of Kaposi's sarcoma and Kaposi's sarcoma-associated herpesvirus-induced cell reprogramming. Trends Cell Biol pii: S0962-8924(13)00055-X. doi:10.1016/j.tcb.2013.04.001
  18. Candido J, Hagemann T (2013) Cancer-related inflammation. J Clin Immunol 33(Suppl 1):S79–S84PubMedGoogle Scholar
  19. Cappello F, Caramori G, Campanella C et al (2011) Convergent sets of data from in vivo and in vitro methods point to an active role of Hsp60 in chronic obstructive pulmonary disease pathogenesis. PLoS ONE 6:e28200PubMedGoogle Scholar
  20. Carmody Soni EE, Miller BJ, Scarborough MT et al (2011) Cyclooxygenase-2 expression is not associated with clinical outcome in synovial sarcoma. Oncol Rep 26:1513–1517PubMedGoogle Scholar
  21. Castilla MA, Moreno-Bueno G, Romero-Perez L et al (2011) Micro-RNA signature of the epithelial–mesenchymal transition in endometrial carcinosarcoma. J Pathol 223:72–80PubMedGoogle Scholar
  22. Castro-Gamero AM, Borges KS, Dass V et al (2012) Inhibition of nuclear factor-kappaB by dehydroxymethylepoxyquinomicin induces schedule-dependent chemosensitivity to anticancer drugs and enhances chemoinduced apoptosis in osteosarcoma cells. Anticancer Drugs 23:638–650PubMedGoogle Scholar
  23. Chaturvedi MM, Sung B, Yadav VR et al (2011) NF-κB addiction and its role in cancer: 'one size does not fit all'. Oncogene 30:1615–1630PubMedGoogle Scholar
  24. Chen YJ, Wei YY, Chen HT et al (2009) Osteopontin increases migration and MMP-9 up-regulation via alphavbeta3 integrin, FAK, ERK, and NF-kappaB-dependent pathway in human chondrosarcoma cells. J Cell Physiol 221:98–108PubMedGoogle Scholar
  25. Chien Y, Kim S, Bumeister R et al (2006) RalB GTPase-mediated activation of the IkappaB family kinase TBK1 couples innate immune signaling to tumor cell survival. Cell 127:157–170PubMedGoogle Scholar
  26. Choi JK, Choi BH, Ha Y et al (2007) Signal transduction pathways of GM-CSF in neural cell lines. Neurosci Lett 420:217–222PubMedGoogle Scholar
  27. Chou SD, Prince T, Gong J et al (2012) mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PLoS ONE 7:e39679PubMedGoogle Scholar
  28. Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103PubMedGoogle Scholar
  29. Ciocca DR, Arrigo AP, Calderwood SK (2013) Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch Toxicol 87:19–48PubMedGoogle Scholar
  30. Colotta F, Allavena P, Sica A et al (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081PubMedGoogle Scholar
  31. Curran CS, Evans MD, Bertics PJ (2011) GM-CSF production by glioblastoma cells has a functional role in eosinophil survival, activation, and growth factor production for enhanced tumor cell proliferation. J Immunol 187:1254–1263PubMedGoogle Scholar
  32. Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927PubMedGoogle Scholar
  33. Dickson MA, Okuno SH, Keohan ML et al (2013) Phase II study of the HSP90-inhibitor BIIB021 in gastrointestinal stromal tumors. Ann Oncol 24:252–257PubMedGoogle Scholar
  34. Douglas JL, Gustin JK, Moses AV et al (2010) Kaposi sarcoma pathogenesis: a triad of viral infection. Oncogenesis and chronic inflammation. Transl Biomed 1:172PubMedGoogle Scholar
  35. Downward J (2009) Cancer: a tumour gene's fatal flaws. Nat Geosci 462:44–45Google Scholar
  36. Edris B, Willingham SB, Weiskopf K et al (2013) Anti-KIT monoclonal antibody inhibits imatinib-resistant gastrointestinal stromal tumor growth. Proc Natl Acad Sci U S A 110:3501–3506PubMedGoogle Scholar
  37. Efeyan A, Sabatini DM (2010) mTOR and cancer: many loops in one pathway. Curr Opin Cell Biol 22:169–176PubMedGoogle Scholar
  38. Enders GH (2010) Gauchos and ochos: a Wee1-Cdk tango regulating mitotic entry. Cell Div 5:12. doi:10.1186/1747-1028-5-12 PubMedGoogle Scholar
  39. Engin F, Bertin T, Ma O et al (2009) Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum Mol Genet 18:1464–1470PubMedGoogle Scholar
  40. Fan X, Matsui W, Khaki L et al (2006) Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66:7445–7452PubMedGoogle Scholar
  41. Feldman AL, Pak H, Yang JC et al (2001) Serum endostatin levels are elevated in patients with soft tissue sarcoma. Cancer 91:1525–1529PubMedGoogle Scholar
  42. Felgenhauer JL, Nieder ML, Krailo MD et al (2013) A pilot study of low-dose anti-angiogenic chemotherapy in combination with standard multiagent chemotherapy for patients with newly diagnosed metastatic Ewing sarcoma family of tumors: A Children's Oncology Group (COG) Phase II study NCT00061893. Pediatr Blood Cancer 60:409–414PubMedGoogle Scholar
  43. Fernandez M, Pino AM, Figueroa P et al (2010) The increased expression of receptor activator of nuclear-kappaB ligand (RANKL) of multiple myeloma bone marrow stromal cells is inhibited by the bisphosphonate ibandronate. J Cell Biochem 111:130–137PubMedGoogle Scholar
  44. Ferrari A, Sultan I, Huang TT et al (2011) Soft tissue sarcoma across the age spectrum: a population-based study from the Surveillance Epidemiology and End Results database. Pediatr Blood Cancer 57:943–949PubMedGoogle Scholar
  45. Francis P, Namlos HM, Muller C et al (2007) Diagnostic and prognostic gene expression signatures in 177 soft tissue sarcomas: hypoxia-induced transcription profile signifies metastatic potential. BMC Genomics 8:73PubMedGoogle Scholar
  46. Frei K, Piani D, Malipiero UV et al (1992) Granulocyte-macrophage colony-stimulating factor (GM-CSF) production by glioblastoma cells. Despite the presence of inducing signals GM-CSF is not expressed in vivo. J Immunol 148:3140–3146PubMedGoogle Scholar
  47. Friedman E (2011) The role of mirk kinase in sarcomas. Sarcoma 2011:260757. doi:10.1155/2011/260757
  48. Friedrichs N, Kuchler J, Endl E et al (2008) Insulin-like growth factor-1 receptor acts as a growth regulator in synovial sarcoma. J Pathol 216:428–439PubMedGoogle Scholar
  49. Fu W, Ma L, Chu B et al (2011) The cyclin-dependent kinase inhibitor SCH 727965 (dinacliclib) induces the apoptosis of osteosarcoma cells. Mol Cancer Ther 10:1018–1027PubMedGoogle Scholar
  50. Fukuda T, Yamaguchi T, Yamaki T et al (2001) Ovarian fibrosarcoma producing multiple cytokines. Pathol Int 51:739–743PubMedGoogle Scholar
  51. Funahashi Y, Hernandez SL, Das I et al (2008) A notch1 ectodomain construct inhibits endothelial notch signaling, tumor growth, and angiogenesis. Cancer Res 68:4727–4735PubMedGoogle Scholar
  52. Garcia K, Stumpff J, Duncan T et al (2009) Tyrosines in the kinesin-5 head domain are necessary for phosphorylation by Wee1 and for mitotic spindle integrity. Curr Biol 19:1670–1676PubMedGoogle Scholar
  53. Gendy AS, Lipskar A, Glick RD et al (2011) Selective inhibition of cyclooxygenase-2 suppresses metastatic disease without affecting primary tumor growth in a murine model of Ewing sarcoma. J Pediatr Surg 46:108–114PubMedGoogle Scholar
  54. Guan H, Zhou Z, Gallick GE et al (2008) Targeting Lyn inhibits tumor growth and metastasis in Ewing's sarcoma. Mol Cancer Ther 7:1807–1816PubMedGoogle Scholar
  55. Guertin DA, Sabatini DM (2005) An expanding role for mTOR in cancer. Trends Mol Med 11:353–361PubMedGoogle Scholar
  56. Guzhova IV, Darieva ZA, Melo AR et al (1997) Major stress protein Hsp70 interacts with NF-kB regulatory complex in human T-lymphoma cells. Cell Stress Chaperones 2:132–139PubMedGoogle Scholar
  57. Hacker H, Karin M (2006) Regulation and function of IKK and IKK-related kinases. Sci STKE 2006:re13PubMedGoogle Scholar
  58. Hafeez BB, Ahmed S, Wang N et al (2006) Green tea polyphenols-induced apoptosis in human osteosarcoma SAOS-2 cells involves a caspase-dependent mechanism with downregulation of nuclear factor-kappaB. Toxicol Appl Pharmacol 216:11–19PubMedGoogle Scholar
  59. Hahnel A, Wichmann H, Greither T et al (2012) Prognostic impact of mRNA levels of osteopontin splice variants in soft tissue sarcoma patients. BMC Cancer 12:131PubMedGoogle Scholar
  60. Hashimoto O, Shinkawa M, Torimura T et al (2006) Cell cycle regulation by the Wee1 inhibitor PD0166285, pyrido [2,3-d] pyimidine, in the B16 mouse melanoma cell line. BMC Cancer 6:292PubMedGoogle Scholar
  61. He S, Li P, Chen CH et al (2012) Effective oncolytic vaccinia therapy for human sarcomas. J Surg Res 175:e53–e60PubMedGoogle Scholar
  62. Heinrich MC, Corless CL, Demetri GD et al (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21:4342–4349PubMedGoogle Scholar
  63. Henderson MT, Hollmig ST (2012) Malignant fibrous histiocytoma: changing perceptions and management challenges. J Am Acad Dermatol 67:1335–1341PubMedGoogle Scholar
  64. Henderson B, Pockley AG (2005) Molecular chaperones and cell signalling. Cambridge University Press, CambridgeGoogle Scholar
  65. Herr I, Debatin KM (2001) Cellular stress response and apoptosis in cancer therapy. Blood 98:2603–2614PubMedGoogle Scholar
  66. Hillegass JM, Shukla A, MacPherson MB et al (2010) Utilization of gene profiling and proteomics to determine mineral pathogenicity in a human mesothelial cell line (LP9/TERT-1). J Toxicol Environ Health A 73:423–436PubMedGoogle Scholar
  67. Hirama M, Takahashi F, Takahashi K et al (2003) Osteopontin overproduced by tumor cells acts as a potent angiogenic factor contributing to tumor growth. Cancer Lett 198:107–117PubMedGoogle Scholar
  68. Hoki Y, Hiraku Y, Ma N et al (2007a) iNOS-dependent DNA damage in patients with malignant fibrous histiocytoma in relation to prognosis. Cancer Sci 98:163–168PubMedGoogle Scholar
  69. Hoki Y, Murata M, Hiraku Y et al (2007b) 8-Nitroguanine as a potential biomarker for progression of malignant fibrous histiocytoma, a model of inflammation-related cancer. Oncol Rep 18:1165–1169PubMedGoogle Scholar
  70. Hönicke AS, Ender SA, Radons J (2012) Combined administration of EGCG and IL-1 receptor antagonist efficiently downregulates IL-1-induced tumorigenic factors in U-2 OS human osteosarcoma cells. Int J Oncol 41:753–758PubMedGoogle Scholar
  71. Huang X, Choi JK, Park SR et al (2007) GM-CSF inhibits apoptosis of neural cells via regulating the expression of apoptosis-related proteins. Neurosci Res 58:50–57PubMedGoogle Scholar
  72. Ishii E, Ohga S, Aoki T et al (1991) Prognosis of children with virus-associated hemophagocytic syndrome and malignant histiocytosis: correlation with levels of serum interleukin-1 and tumor necrosis factor. Acta Haematol 85:93–99PubMedGoogle Scholar
  73. Ivanov SV, Ivanova AV, Goparaju CM et al (2009) Tumorigenic properties of alternative osteopontin isoforms in mesothelioma. Biochem Biophys Res Commun 382:514–518PubMedGoogle Scholar
  74. Jacobs H, Bast A, Peters GJ et al (2011) The semisynthetic flavonoid monoHER sensitises human soft tissue sarcoma cells to doxorubicin-induced apoptosis via inhibition of nuclear factor-kappaB. Br J Cancer 104:437–440PubMedGoogle Scholar
  75. Jin K, Park S, Ewton DZ et al (2007) The survival kinase Mirk/Dyrk1B is a downstream effector of oncogenic K-ras in pancreatic cancer. Cancer Res 67:7247–7255PubMedGoogle Scholar
  76. Keller SA, Hernandez-Hopkins D, Vider J et al (2006) NF-kappaB is essential for the progression of KSHV- and EBV-infected lymphomas in vivo. Blood 107:3295–3302PubMedGoogle Scholar
  77. Koga K, Nabeshima K, Nishimura N et al (2005) Microvessel density and HIF-1alpha expression correlate with malignant potential in fibrohistiocytic tumors. Eur J Dermatol 15:465–469PubMedGoogle Scholar
  78. Koga K, Nabeshima K, Aoki M et al (2007) Emmprin in epithelioid sarcoma: expression in tumor cell membrane and stimulation of MMP-2 production in tumor-associated fibroblasts. Int J Cancer 120:761–768PubMedGoogle Scholar
  79. Kundu JK, Surh YJ (2012) Emerging avenues linking inflammation and cancer. Free Radic Biol Med 52:2013–2037PubMedGoogle Scholar
  80. Kushlinskii NE, Babkina IV, Solov'ev YN et al (2000) Vascular endothelium growth factor and angiogenin in the serum of patients with osteosarcoma and Ewing's tumor. Bull Exp Biol Med 130:691–693PubMedGoogle Scholar
  81. Ladetto M, Vallet S, Trojan A et al (2005) Cyclooxygenase-2 (COX-2) is frequently expressed in multiple myeloma and is an independent predictor of poor outcome. Blood 105:4784–4791PubMedGoogle Scholar
  82. Lahat G, Lazar A, Lev D (2008) Sarcoma epidemiology and etiology: potential environmental and genetic factors. Surg Clin North Am 88:451–481PubMedGoogle Scholar
  83. Lahat G, Zhang P, Zhu QS et al (2011) The expression of c-Met pathway components in unclassified pleomorphic sarcoma/malignant fibrous histiocytoma (UPS/MFH): a tissue microarray study. Histopathology 59:556–561PubMedGoogle Scholar
  84. Lambert LA, Qiao N, Hunt KK et al (2008) Autophagy: a novel mechanism of synergistic cytotoxicity between doxorubicin and roscovitine in a sarcoma model. Cancer Res 68:7966–7974PubMedGoogle Scholar
  85. Lazar AJ, Das P, Tuvin D et al (2007) Angiogenesis-promoting gene patterns in alveolar soft part sarcoma. Clin Cancer Res 13:7314–7321PubMedGoogle Scholar
  86. Lee HJ, Kim SA, Lee HJ et al (2010) Paeonol oxime inhibits bFGF-induced angiogenesis and reduces VEGF levels in fibrosarcoma cells. PLoS ONE 5:e12358PubMedGoogle Scholar
  87. Lee J, Lee J, Yu H et al (2011) Differential dependency of human cancer cells on vascular endothelial growth factor-mediated autocrine growth and survival. Cancer Lett 309:145–150PubMedGoogle Scholar
  88. Li G, Kawashima H, Ogose A et al (2011) Efficient virotherapy for osteosarcoma by telomerase-specific oncolytic adenovirus. J Cancer Res Clin Oncol 137:1037–1051PubMedGoogle Scholar
  89. Li G, Cai M, Fu D et al (2012a) Heat shock protein 90B1 plays an oncogenic role and is a target of microRNA-223 in human osteosarcoma. Cell Physiol Biochem 30:1481–1490PubMedGoogle Scholar
  90. Li Y, Zhang J, Ma D et al (2012b) Curcumin inhibits proliferation and invasion of osteosarcoma cells through inactivation of Notch-1 signaling. FEBS J 279:2247–2259PubMedGoogle Scholar
  91. Liu X, Newton RC, Scherle PA (2010) Developing c-MET pathway inhibitors for cancer therapy: progress and challenges. Trends Mol Med 16:37–45PubMedGoogle Scholar
  92. Liu B, Qu L, Yang Z et al (2012) Cyclooxygenase-2 inhibitors induce anoikis in osteosarcoma via PI3K/Akt pathway. Med Hypotheses 79:98–100PubMedGoogle Scholar
  93. Luke JJ, D'Adamo DR, Dickson MA et al (2012) The cyclin-dependent kinase inhibitor flavopiridol potentiates doxorubicin efficacy in advanced sarcomas: preclinical investigations and results of a phase I dose-escalation clinical trial. Clin Cancer Res 18:2638–2647PubMedGoogle Scholar
  94. Lund SA, Giachelli CM, Scatena M (2009) The role of osteopontin in inflammatory processes. J Cell Commun Signal 3:311–322PubMedGoogle Scholar
  95. Macario AJ, Conway de Macario E (2007) Chaperonopathies by defect, excess, or mistake. Ann N Y Acad Sci 1113:178–191PubMedGoogle Scholar
  96. Mantovani A (2010) Molecular pathways linking inflammation and cancer. Curr Mol Med 10:369–373PubMedGoogle Scholar
  97. Martin Liberal J, Lagares-Tena L, Sainz-Jaspeado M et al. (2012) Targeted therapies in sarcomas: challenging the challenge. Sarcoma 2012:626094. doi:10.1155/2012/626094
  98. Martinelli S, McDowell HP, Vigne SD et al (2009) RAS signaling dysregulation in human embryonal Rhabdomyosarcoma. Genes, Chromosomes Cancer 48:975–982PubMedGoogle Scholar
  99. Matushansky I, Charytonowicz E, Mills J et al (2009) MFH classification: differentiating undifferentiated pleomorphic sarcoma in the 21st century. Expert Rev Anticancer Ther 9:1135–1144PubMedGoogle Scholar
  100. McMeekin DS, Sill MW, Darcy KM et al (2012) A phase II trial of thalidomide in patients with refractory uterine carcinosarcoma and correlation with biomarkers of angiogenesis: a Gynecologic Oncology Group study. Gynecol Oncol 127:356–361PubMedGoogle Scholar
  101. Melhem MF, Meisler AI, Saito R et al (1993) Cytokines in inflammatory malignant fibrous histiocytoma presenting with leukemoid reaction. Blood 82:2038–2044PubMedGoogle Scholar
  102. Menczer J, Schreiber L, Sukmanov O et al (2010) COX-2 expression in uterine carcinosarcoma. Acta Obstet Gynecol Scand 89:120–125PubMedGoogle Scholar
  103. Mollapour M, Tsutsumi S, Neckers L (2010) Hsp90 phosphorylation, Wee1 and the cell cycle. Cell Cycle 9:2310–2316PubMedGoogle Scholar
  104. Moon A, Bacchini P, Bertoni F et al (2010) Expression of heat shock proteins in osteosarcomas. Pathology 42:421–425PubMedGoogle Scholar
  105. Mori K, Berreur M, Blanchard F et al (2007) Receptor activator of nuclear factor-kappaB ligand (RANKL) directly modulates the gene expression profile of RANK-positive Saos-2 human osteosarcoma cells. Oncol Rep 18:1365–1371PubMedGoogle Scholar
  106. Multhoff G, Molls M, Radons J (2012) Chronic inflammation in cancer development. Front Immunol 2:98. doi:10.3389/fimmu.2011.00098 PubMedGoogle Scholar
  107. Nakayama Y, Kato N, Nakajima Y et al (2004) Effect of TNF-alpha on human osteosarcoma cell line Saos2–TNF-alpha regulation of bone sialoprotein gene expression in Saos2 osteoblast-like cells. Cell Biol Int 28:653–660PubMedGoogle Scholar
  108. Ng PK, Tsui SK, Lau CP et al (2010) CCAAT/enhancer binding protein beta is up-regulated in giant cell tumor of bone and regulates RANKL expression. J Cell Biochem 110:438–446PubMedGoogle Scholar
  109. Paudel N, Sadagopan S, Chakraborty S et al (2012) Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen interacts with multifunctional angiogenin to utilize its antiapoptotic functions. J Virol 86:5974–5991PubMedGoogle Scholar
  110. Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8:915–928PubMedGoogle Scholar
  111. Pollard PJ, Briere JJ, Alam NA et al (2005) Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet 14:2231–2239PubMedGoogle Scholar
  112. Prakash O, Swamy OR, Peng X et al (2005) Activation of Src kinase Lyn by the Kaposi sarcoma-associated herpesvirus K1 protein: implications for lymphomagenesis. Blood 105:3987–3994PubMedGoogle Scholar
  113. Prieur A, Tirode F, Cohen P et al (2004) EWS/FLI-1 silencing and gene profiling of Ewing cells reveal downstream oncogenic pathways and a crucial role for repression of insulin-like growth factor binding protein 3. Mol Cell Biol 24:7275–7283PubMedGoogle Scholar
  114. Quesada J, Amato R (2012) The molecular biology of soft-tissue sarcomas and current trends in therapy. Sarcoma 2012:849456. doi:10.1155/2012/849456
  115. Radons J, Bosserhoff AK, Grassel S et al (2006a) p38MAPK mediates IL-1-induced down-regulation of aggrecan gene expression in human chondrocytes. Int J Mol Med 17:661–668PubMedGoogle Scholar
  116. Radons J, Falk W, Schubert TE (2006b) Interleukin-10 does not affect IL-1-induced interleukin-6 and metalloproteinase production in human chondrosarcoma cells, SW1353. Int J Mol Med 17:377–383PubMedGoogle Scholar
  117. Rao PK, Missiaglia E, Shields L et al (2010) Distinct roles for miR-1 and miR-133a in the proliferation and differentiation of rhabdomyosarcoma cells. FASEB J 24:3427–3437PubMedGoogle Scholar
  118. Rappa F, Farina F, Zummo G et al (2012) HSP-molecular chaperones in cancer biogenesis and tumor therapy: an overview. Anticancer Res 32:5139–5150PubMedGoogle Scholar
  119. Raut CP, Nawrocki S, Lashinger LM et al (2004) Celecoxib inhibits angiogenesis by inducing endothelial cell apoptosis in human pancreatic tumor xenografts. Cancer Biol Ther 3:1217–1224PubMedGoogle Scholar
  120. Roma J, Masia A, Reventos J et al (2011) Notch pathway inhibition significantly reduces rhabdomyosarcoma invasiveness and mobility in vitro. Clin Cancer Res 17:505–513PubMedGoogle Scholar
  121. Ross KA, Smyth NA, Murawski CD et al. (2013) The biology of ewing sarcoma. ISRN Oncol 2013:759725. doi: 10.1155/2013/759725
  122. Rubin AI, Stiller MJ (2002) A listing of skin conditions exhibiting the koebner and pseudo-koebner phenomena with eliciting stimuli. J Cutan Med Surg 6:29–34PubMedGoogle Scholar
  123. Rubin BP, Heinrich MC, Corless CL (2007) Gastrointestinal stromal tumour. Lancet 369:1731–1741PubMedGoogle Scholar
  124. Rutkowski P, Kaminska J, Kowalska M et al (2003) Cytokine and cytokine receptor serum levels in adult bone sarcoma patients: correlations with local tumor extent and prognosis. J Surg Oncol 84:151–159PubMedGoogle Scholar
  125. Sadagopan S, Sharma-Walia N, Veettil MV et al (2009) Kaposi's sarcoma-associated herpesvirus upregulates angiogenin during infection of human dermal microvascular endothelial cells, which induces 45S rRNA synthesis, antiapoptosis, cell proliferation, migration, and angiogenesis. J Virol 83:3342–3364PubMedGoogle Scholar
  126. Sadagopan S, Veettil MV, Chakraborty S et al (2012) Angiogenin functionally interacts with p53 and regulates p53-mediated apoptosis and cell survival. Oncogene 31:4835–4847PubMedGoogle Scholar
  127. Sastry KV, Sharma SC, Mann SB et al (1999) Aural cholesteatoma: role of tumor necrosis factor-alpha in bone destruction. Am J Otol 20:158–161PubMedGoogle Scholar
  128. Savage SA, Mirabello L (2011) Using epidemiology and genomics to understand osteosarcoma etiology. Sarcoma 2011.548151. doi:10.1155/2011/548151
  129. Schoffski P, Adkins D, Blay J, Gil T, Elias AD, Rutkowski P, Pennock GK, Youssoufian H, Zojwalla NJ, Willey R, Grebennik DO (2011) Phase II trial of anti-IGF-IR antibody cixutumumab in patients with advanced or metastatic soft-tissue sarcoma and Ewing family of tumors. J.Clin.Oncol. 29(Suppl.):10004. http://meeting.ascopubs.org/cgi/content/abstract/29-15_suppl/10004?sid=a6464a16-77fd-4537-baa7-c98ad3b1e0bc Google Scholar
  130. Scotlandi K, Avnet S, Benini S et al (2002) Expression of an IGF-I receptor dominant negative mutant induces apoptosis, inhibits tumorigenesis and enhances chemosensitivity in Ewing's sarcoma cells. Int J Cancer 101:11–16PubMedGoogle Scholar
  131. Sharma-Walia N, Raghu H, Sadagopan S et al (2006) Cyclooxygenase 2 induced by Kaposi's sarcoma-associated herpesvirus early during in vitro infection of target cells plays a role in the maintenance of latent viral gene expression. J Virol 80:6534–6552PubMedGoogle Scholar
  132. Sharma-Walia N, Paul AG, Bottero V et al (2010) Kaposi's sarcoma associated herpes virus (KSHV) induced COX-2: a key factor in latency, inflammation, angiogenesis, cell survival and invasion. PLoS Pathog 6:e1000777PubMedGoogle Scholar
  133. Silva I, Branco JC (2011) Rank/Rankl/opg: literature review. Acta Reumatol Port 36:209–218PubMedGoogle Scholar
  134. Simonart T, Van Vooren JP (2002) Interleukin-1 beta increases the BCL-2/BAX ratio in Kaposi's sarcoma cells. Cytokine+ 19:259–266PubMedGoogle Scholar
  135. Singh M, Pandey A, Karikari CA et al (2010) Cell cycle inhibition and apoptosis induced by curcumin in Ewing sarcoma cell line SK-NEP-1. Med Oncol 27:1096–1101PubMedGoogle Scholar
  136. Sivakumar R, Sharma-Walia N, Raghu H et al (2008) Kaposi's sarcoma-associated herpesvirus induces sustained levels of vascular endothelial growth factors A and C early during in vitro infection of human microvascular dermal endothelial cells: biological implications. J Virol 82:1759–1776PubMedGoogle Scholar
  137. Sparmann A, Bar-Sagi D (2004) Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6:447–458PubMedGoogle Scholar
  138. Stettner MR, Wang W, Nabors LB et al (2005) Lyn kinase activity is the predominant cellular SRC kinase activity in glioblastoma tumor cells. Cancer Res 65:5535–5543PubMedGoogle Scholar
  139. Stiller CA, Trama A, Serraino D et al (2013) Descriptive epidemiology of sarcomas in Europe: report from the RARECARE project. Eur J Cancer 49:684–685PubMedGoogle Scholar
  140. Subramanian S, Lui WO, Lee CH et al (2008) MicroRNA expression signature of human sarcomas. Oncogene 27:2015–2026PubMedGoogle Scholar
  141. Suhasini AN, Brosh RM Jr (2013) DNA helicases associated with genetic instability, cancer, and aging. Adv Exp Med Biol 767:123–144PubMedGoogle Scholar
  142. Sun SG, Lau YS, Itonaga I et al (2006) Bone stromal cells in pagetic bone and Paget's sarcoma express RANKL and support human osteoclast formation. J Pathol 209:114–120PubMedGoogle Scholar
  143. Takahashi F, Akutagawa S, Fukumoto H et al (2002) Osteopontin induces angiogenesis of murine neuroblastoma cells in mice. Int J Cancer 98:707–712PubMedGoogle Scholar
  144. Takebe N, Harris PJ, Warren RQ et al (2011) Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 8:97–106PubMedGoogle Scholar
  145. Tanaka M, Setoguchi T, Hirotsu M et al (2009) Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation. Br J Cancer 100:1957–1965PubMedGoogle Scholar
  146. Taulli R, Bersani F, Foglizzo V et al (2009) The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation. J Clin Invest 119:2366–2378PubMedGoogle Scholar
  147. Taylor R, Knowles HJ, Athanasou NA (2011) Ewing sarcoma cells express RANKL and support osteoclastogenesis. J Pathol 225:195–202PubMedGoogle Scholar
  148. Tili E, Michaille JJ, Wernicke D et al (2011) Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer. Proc Natl Acad Sci U S A 108:4908–4913PubMedGoogle Scholar
  149. Tomlinson IP, Alam NA, Rowan AJ et al (2002) Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30:406–410PubMedGoogle Scholar
  150. Toro JR, Travis LB, Wu HJ et al (2006) Incidence patterns of soft tissue sarcomas, regardless of primary site, in the surveillance, epidemiology and end results program, 1978–2001: an analysis of 26,758 cases. Int J Cancer 119:2922–2930PubMedGoogle Scholar
  151. Trieb K, Gerth R, Windhager R et al (2000a) Serum antibodies against the heat shock protein 60 are elevated in patients with osteosarcoma. Immunobiology 201:368–376PubMedGoogle Scholar
  152. Trieb K, Kohlbeck R, Lang S et al (2000b) Heat shock protein 72 expression in chondrosarcoma correlates with differentiation. J Cancer Res Clin Oncol 126:667–670PubMedGoogle Scholar
  153. Uozaki H, Ishida T, Kakiuchi C et al (2000) Expression of heat shock proteins in osteosarcoma and its relationship to prognosis. Pathol Res Pract 196:665–673PubMedGoogle Scholar
  154. Voronov E, Carmi Y, Apte RN (2007) Role of IL-1-mediated inflammation in tumor angiogenesis. Adv Exp Med Biol 601:265–270PubMedGoogle Scholar
  155. Wagner AJ, Goldberg JM, Dubois SG et al (2012) Tivantinib (ARQ 197), a selective inhibitor of MET, in patients with microphthalmia transcription factor-associated tumors: results of a multicenter phase 2 trial. Cancer 118:5894–5902PubMedGoogle Scholar
  156. Wang Y, Chen L, Hagiwara N et al (2010) Regulation of heat shock protein 60 and 72 expression in the failing heart. J Mol Cell Cardiol 48:360–366PubMedGoogle Scholar
  157. Wong TF, Takeda T, Li B et al (2011) Curcumin disrupts uterine leiomyosarcoma cells through AKT-mTOR pathway inhibition. Gynecol Oncol 122:141–148PubMedGoogle Scholar
  158. Wu SP, Huang TC, Lin CC et al (2012) Pardaxin, a fish antimicrobial peptide, exhibits antitumor activity toward murine fibrosarcoma in vitro and in vivo. Mar Drugs 10:1852–1872PubMedGoogle Scholar
  159. Xia JJ, Pei LB, Zhuang JP et al (2010) Celecoxib inhibits beta-catenin-dependent survival of the human osteosarcoma MG-63 cell line. J Int Med Res 38:1294–1304PubMedGoogle Scholar
  160. Xie X, Ghadimi MP, Young ED et al (2011) Combining EGFR and mTOR blockade for the treatment of epithelioid sarcoma. Clin Cancer Res 17:5901–5912PubMedGoogle Scholar
  161. Yan D, Dong XE, Chen X et al (2009) MicroRNA-1/206 targets c-Met and inhibits rhabdomyosarcoma development. J Biol Chem 284:29596–29604PubMedGoogle Scholar
  162. Yang Q, Guan KL (2007) Expanding mTOR signaling. Cell Res 17:666–681PubMedGoogle Scholar
  163. Yang C, Ji D, Weinstein EJ et al (2010) The kinase Mirk is a potential therapeutic target in osteosarcoma. Carcinogenesis 31:552–558PubMedGoogle Scholar
  164. Ye F, Lattif AA, Xie J et al (2012) Nutlin-3 induces apoptosis, disrupts viral latency and inhibits expression of angiopoietin-2 in Kaposi sarcoma tumor cells. Cell Cycle 11:1393–1399PubMedGoogle Scholar
  165. Yetiser S, Satar B, Aydin N (2002) Expression of epidermal growth factor, tumor necrosis factor-alpha, and interleukin-1alpha in chronic otitis media with or without cholesteatoma. Otol Neurotol 23:647–652PubMedGoogle Scholar
  166. Yoo J, Robinson RA, Lee JY (1999) H-ras and K-ras gene mutations in primary human soft tissue sarcoma: concomitant mutations of the ras genes. Mod Pathol 12:775–780PubMedGoogle Scholar
  167. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809PubMedGoogle Scholar
  168. Zanini C, Pulera F, Carta F et al (2008) Proteomic identification of heat shock protein 27 as a differentiation and prognostic marker in neuroblastoma but not in Ewing's sarcoma. Virchows Arch 452:157–167PubMedGoogle Scholar
  169. Zha J, Lackner MR (2010) Targeting the insulin-like growth factor receptor-1R pathway for cancer therapy. Clin Cancer Res 16:2512–2517PubMedGoogle Scholar
  170. Zhang Y, Zhang N, Dai B et al (2008) FoxM1B transcriptionally regulates vascular endothelial growth factor expression and promotes the angiogenesis and growth of glioma cells. Cancer Res 68:8733–8742PubMedGoogle Scholar
  171. Zhang P, Bill K, Liu J et al (2012) MiR-155 is a liposarcoma oncogene that targets casein kinase-1alpha and enhances beta-catenin signaling. Cancer Res 72:1751–1762PubMedGoogle Scholar
  172. Zibat A, Missiaglia E, Rosenberger A et al (2010) Activation of the hedgehog pathway confers a poor prognosis in embryonal and fusion gene-negative alveolar rhabdomyosarcoma. Oncogene 29:6323–6330PubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2013

Authors and Affiliations

  1. 1.multimmune GmbH c/o Department of Radiation OncologyKlinikum rechts der Isar, Technische Universität MünchenMunichGermany

Personalised recommendations