Cell Stress and Chaperones

, Volume 18, Issue 4, pp 439–446 | Cite as

Mycobacterial and mouse HSP70 have immuno-modulatory effects on dendritic cells

  • R. Spiering
  • R. van der Zee
  • J. Wagenaar
  • W. van Eden
  • F. Broere
Original Paper


Previously, it has been shown that heat shock protein 70 (HSP70) can prevent inflammatory damage in experimental autoimmune disease models. Various possible underlying working mechanisms have been proposed. One possibility is that HSP70 induces a tolerogenic phenotype in dendritic cells (DCs) as a result of the direct interaction of the antigen with the DC. Tolerogenic DCs can induce antigen-specific regulatory T cells and dampen pathogenic T cell responses. We show that treatment of murine DCs with either mycobacterial (Mt) or mouse HSP70 and pulsed with the disease-inducing antigen induced suppression of proteoglycan-induced arthritis (PGIA), although mouse HSP70-treated DCs could ameliorate PGIA to a greater extent. In addition, while murine DCs treated with Mt- or mouse HSP70 had no significantly altered phenotype as compared to untreated DCs, HSP70-treated DCs pulsed with pOVA (ovalbumin peptide 323–339) induced a significantly increased production of IL-10 in pOVA-specific T cells. IL-10-producing T cells were earlier shown to be involved in Mt HSP70-induced suppression of PGIA. In conclusion, this study indicates that Mt- and mouse HSP70-treated BMDC can suppress PGIA via an IL-10-producing T cell-dependent manner.


Dendritic cell HSP70 Arthritis Mouse/murine Tolerance 


  1. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442. doi:10.1038/74697 PubMedCrossRefGoogle Scholar
  2. Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14:303–313PubMedCrossRefGoogle Scholar
  3. Bausinger H, Lipsker D, Ziylan U, Manie S, Briand JP, Cazenave JP, Muller S, Haeuw JF, Ravanat C, de la Salle H, Hanau D (2002) Endotoxin-free heat-shock protein 70 fails to induce APC activation. Eur J Immunol 32:3708–3713PubMedCrossRefGoogle Scholar
  4. Bendz H, Marincek BC, Momburg F, Ellwart JW, Issels RD, Nelson PJ, Noessner E (2008) Calcium signaling in dendritic cells by human or mycobacterial Hsp70 is caused by contamination and is not required for Hsp70-mediated enhancement of cross-presentation. J Biol Chem 283:26477–26483. doi:10.1074/jbc.M803310200 PubMedCrossRefGoogle Scholar
  5. Borges TJ, Wieten L, van Herwijnen MJ, Broere F, van der Zee R, Bonorino C, van Eden W (2012) The anti-inflammatory mechanisms of Hsp70. Front Immunol 3:95. doi:10.3389/fimmu.2012.00095 PubMedCrossRefGoogle Scholar
  6. Broere F, Wieten L, Klein Koerkamp EI, van Roon JA, Guichelaar T, Lafeber FP, van Eden W (2008) Oral or nasal antigen induces regulatory T cells that suppress arthritis and proliferation of arthritogenic T cells in joint draining lymph nodes. J Immunol 181:899–906PubMedGoogle Scholar
  7. Cohen N, Mouly E, Hamdi H, Maillot MC, Pallardy M, Godot V, Capel F, Balian A, Naveau S, Galanaud P, Lemoine FM, Emilie D (2006) GILZ expression in human dendritic cells redirects their maturation and prevents antigen-specific T lymphocyte response. Blood 107:2037–2044. doi:10.1182/blood-2005-07-2760 PubMedCrossRefGoogle Scholar
  8. Delneste Y, Magistrelli G, Gauchat J, Haeuw J, Aubry J, Nakamura K, Kawakami-Honda N, Goetsch L, Sawamura T, Bonnefoy J, Jeannin P (2002) Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17:353–362PubMedCrossRefGoogle Scholar
  9. Detanico T, Rodrigues L, Sabritto AC, Keisermann M, Bauer ME, Zwickey H, Bonorino C (2004) Mycobacterial heat shock protein 70 induces interleukin-10 production: immunomodulation of synovial cell cytokine profile and dendritic cell maturation. Clin Exp Immunol 135:336–342PubMedCrossRefGoogle Scholar
  10. Frick JS, Grunebach F, Autenrieth IB (2010) Immunomodulation by semi-mature dendritic cells: a novel role of Toll-like receptors and interleukin-6. Int J Med Microbiol 300:19–24. doi:10.1016/j.ijmm.2009.08.010 PubMedCrossRefGoogle Scholar
  11. Goth SR, Chu RA, Gregg JP, Cherednichenko G, Pessah IN (2006) Uncoupling of ATP-mediated calcium signaling and dysregulated interleukin-6 secretion in dendritic cells by nanomolar thimerosal. Environ Health Perspect 114:1083–1091PubMedCrossRefGoogle Scholar
  12. Hanyecz A, Berlo SE, Szanto S, Broeren CP, Mikecz K, Glant TT (2004) Achievement of a synergistic adjuvant effect on arthritis induction by activation of innate immunity and forcing the immune response toward the Th1 phenotype. Arthritis Rheum 50:1665–1676. doi:10.1002/art.20180 PubMedCrossRefGoogle Scholar
  13. Hornef MW, Normark BH, Vandewalle A, Normark S (2003) Intracellular recognition of lipopolysaccharide by toll-like receptor 4 in intestinal epithelial cells. J Exp Med 198:1225–1235. doi:10.1084/jem.20022194 PubMedCrossRefGoogle Scholar
  14. Kingston AE, Hicks CA, Colston MJ, Billingham ME (1996) A 71-kD heat shock protein (hsp) from Mycobacterium tuberculosis has modulatory effects on experimental rat arthritis. Clin Exp Immunol 103:77–82PubMedCrossRefGoogle Scholar
  15. Kono H, Rock KL (2008) How dying cells alert the immune system to danger. Nat Rev Immunol 8:279–289. doi:10.1038/nri2215 PubMedCrossRefGoogle Scholar
  16. Li Z, Srivastava P (2004) Heat-shock proteins. Curr Protoc Immunol Appendix 1:Appendix 1 T. doi: 10.1002/0471142735.ima01ts58
  17. Lussow AR, Barrios C, van Embden J, Van der Zee R, Verdini AS, Pessi A, Louis JA, Lambert PH, Del Giudice G (1991) Mycobacterial heat-shock proteins as carrier molecules. Eur J Immunol 21:2297–2302. doi:10.1002/eji.1830211002 PubMedCrossRefGoogle Scholar
  18. Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N, Schuler G (1999) An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 223:77–92PubMedCrossRefGoogle Scholar
  19. Manavalan JS, Rossi PC, Vlad G, Piazza F, Yarilina A, Cortesini R, Mancini D, Suciu-Foca N (2003) High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells. Transpl Immunol 11:245–258. doi:10.1016/S0966-3274(03)00058-3 PubMedCrossRefGoogle Scholar
  20. Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4:762–774. doi:10.1038/nri1457 PubMedCrossRefGoogle Scholar
  21. Motta A, Schmitz C, Rodrigues L, Ribeiro F, Teixeira C, Detanico T, Bonan C, Zwickey H, Bonorino C (2007) Mycobacterium tuberculosis heat-shock protein 70 impairs maturation of dendritic cells from bone marrow precursors, induces interleukin-10 production and inhibits T-cell proliferation in vitro. Immunology 121:462–472. doi:10.1111/j.1365-2567.2007.02564.x PubMedCrossRefGoogle Scholar
  22. Nishikawa M, Takemoto S, Takakura Y (2007) Development of heat shock proteins with controlled distribution properties and their application to vaccine delivery. Yakugaku Zasshi 127:293–300PubMedCrossRefGoogle Scholar
  23. Panjwani NN, Popova L, Srivastava PK (2002) Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. J Immunol 168:2997–3003PubMedGoogle Scholar
  24. Prakken BJ, Wendling U, van der Zee R, Rutten VP, Kuis W, van Eden W (2001) Induction of IL-10 and inhibition of experimental arthritis are specific features of microbial heat shock proteins that are absent for other evolutionarily conserved immunodominant proteins. J Immunol 167:4147–4153PubMedGoogle Scholar
  25. Spiering R, van der Zee R, Wagenaar J, Kapetis D, Zolezzi F, van Eden W, Broere F (2012) Tolerogenic dendritic cells that inhibit autoimmune arthritis can be induced by a combination of carvacrol and thermal stress. PLoS One 7:e46336. doi:10.1371/journal.pone.0046336 PubMedCrossRefGoogle Scholar
  26. Stocki P, Wang XN, Dickinson AM (2012) Inducible heat shock protein 70 reduces T cell responses and stimulatory capacity of monocyte-derived dendritic cells. J Biol Chem 287:12387–12394. doi:10.1074/jbc.M111.307579 PubMedCrossRefGoogle Scholar
  27. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443–451PubMedCrossRefGoogle Scholar
  28. Tanaka S, Kimura Y, Mitani A, Yamamoto G, Nishimura H, Spallek R, Singh M, Noguchi T, Yoshikai Y (1999) Activation of T cells recognizing an epitope of heat-shock protein 70 can protect against rat adjuvant arthritis. J Immunol 163:5560–5565PubMedGoogle Scholar
  29. Tsan MF, Gao B (2004) Endogenous ligands of Toll-like receptors. J Leukoc Biol 76:514–519. doi:10.1189/jlb.0304127 PubMedCrossRefGoogle Scholar
  30. Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112. doi:10.1074/jbc.M111204200 PubMedCrossRefGoogle Scholar
  31. van Eden W, van der Zee R, Prakken B (2005) Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 5:318–330. doi:10.1038/nri1593 PubMedCrossRefGoogle Scholar
  32. van Herwijnen MJ, Wieten L, van der Zee R, van Kooten PJ, Wagenaar-Hilbers JP, Hoek A, den Braber I, Anderton SM, Singh M, Meiring HD, van Els CA, van Eden W, Broere F (2012) Regulatory T cells that recognize a ubiquitous stress-inducible self-antigen are long-lived suppressors of autoimmune arthritis. Proc Natl Acad Sci U S A 109:14134–14139. doi:10.1073/pnas.1206803109 PubMedCrossRefGoogle Scholar
  33. Wang Y, Kelly CG, Karttunen JT, Whittall T, Lehner PJ, Duncan L, MacAry P, Younson JS, Singh M, Oehlmann W, Cheng G, Bergmeier L, Lehner T (2001) CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines. Immunity 15:971–983PubMedCrossRefGoogle Scholar
  34. Wang Y, Kelly CG, Singh M, McGowan EG, Carrara AS, Bergmeier LA, Lehner T (2002) Stimulation of Th1-polarizing cytokines, C–C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J Immunol 169:2422–2429PubMedGoogle Scholar
  35. Wang Y, Whittall T, McGowan E, Younson J, Kelly C, Bergmeier LA, Singh M, Lehner T (2005) Identification of stimulating and inhibitory epitopes within the heat shock protein 70 molecule that modulate cytokine production and maturation of dendritic cells. J Immunol 174:3306–3316PubMedGoogle Scholar
  36. Wang R, Kovalchin JT, Muhlenkamp P, Chandawarkar RY (2006) Exogenous heat shock protein 70 binds macrophage lipid raft microdomain and stimulates phagocytosis, processing, and MHC-II presentation of antigens. Blood 107:1636–1642. doi:10.1182/blood-2005-06-2559 PubMedCrossRefGoogle Scholar
  37. Wendling U, Paul L, van der Zee R, Prakken B, Singh M, van Eden W (2000) A conserved mycobacterial heat shock protein (hsp) 70 sequence prevents adjuvant arthritis upon nasal administration and induces IL-10-producing T cells that cross-react with the mammalian self-hsp70 homologue. J Immunol 164:2711–2717PubMedGoogle Scholar
  38. Wieten L, Berlo SE, Ten Brink CB, van Kooten PJ, Singh M, van der Zee R, Glant TT, Broere F, van Eden W (2009) IL-10 is critically involved in mycobacterial HSP70 induced suppression of proteoglycan-induced arthritis. PLoS One 4:e4186. doi:10.1371/journal.pone.0004186 PubMedCrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2012

Authors and Affiliations

  • R. Spiering
    • 1
  • R. van der Zee
    • 1
  • J. Wagenaar
    • 1
  • W. van Eden
    • 1
  • F. Broere
    • 1
  1. 1.Department of Infectious Diseases and ImmunologyUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations