Advertisement

Cell Stress and Chaperones

, Volume 18, Issue 2, pp 161–170 | Cite as

Acute phase proteins are major clients for the chaperone action of α2-macroglobulin in human plasma

  • Amy R. Wyatt
  • Mark R. Wilson
Original Paper

Abstract

Extracellular protein misfolding is implicated in many age-related diseases including Alzheimer's disease, macular degeneration and arthritis. In this study, putative endogenous clients for the chaperone activity of α2-macroglobulin (α2M) were identified after human plasma was subjected to physiologically relevant sheer stress at 37 °C for 10 days. Western blot analysis showed that four major acute phase proteins: ceruloplasmin, fibrinogen, α1-acid glycoprotein and complement component 3, preferentially co-purified with α2M after plasma was stressed. Furthermore, the formation of complexes between α2M and these putative chaperone clients, detected by sandwich ELISA, was shown to be enhanced in response to stress. These results support the hypothesis that α2M plays an important role in extracellular proteostasis by sequestering misfolded proteins and targeting them for disposal, particularly during acute phase reactions.

Keywords

α2-Macroglobulin Chaperone Protein misfolding Acute phase proteins 

Notes

Acknowledgements

AR Wyatt is grateful for a CJ Martin Fellowship from the National Health and Medical Research Council (NHMRC), Australia and a Junior Research Fellowship, Wolfson College, Cambridge UK. MR Wilson acknowledges financial support for this work from the Centre for Medical Bioscience (University of Wollongong). Blood plasma used in this study was kindly donated by healthy consenting volunteers under the approval of the University of Wollongong and Illawarra Shoalhaven Local Health District Health Medical Human Ethics Committee (HE02/080).

Supplementary material

12192_2012_365_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 18 kb)

References

  1. Adler V, Kryukov V (2007) Serum macroglobulin induces prion protein transition. Neurochem J 1:43–52CrossRefGoogle Scholar
  2. Ajees AA, Gunasekaran K, Narayana SVL, Murthy HMK (2007) Crystallography: crystallographic evidence for deviating C3b structure (reply). Nature 448:E2–E3CrossRefGoogle Scholar
  3. Azizova OA, Aseichev AV, Piryazev AP, Roitman EV, Shcheglovitova ON (2007) Effects of oxidized fibrinogen on the functions of blood cells, blood clotting, and rheology. Bull Exp Biol Med 144(3):397–407PubMedCrossRefGoogle Scholar
  4. Barbucci R, Lamponi S, Magnani A (2003) Fibrinogen conformation and platelet reactivity in relation to material–blood interaction: effect of stress hormones. Biomacromolecules 4:1506–1513PubMedCrossRefGoogle Scholar
  5. Barbucci R, Lamponi S, Magnani A (2007) Role of fibrinogen activation in platelet activation. Biomacromolecules 8(2):523–531PubMedCrossRefGoogle Scholar
  6. Barrett AJ, Starkey PM (1973) The interaction of α2-macroglobulin with proteinases. Characteristics and specificity of the reaction, and a hypothesis concerning its molecular mechanism. Biochem J 133:709–724PubMedGoogle Scholar
  7. Bekard I, Asimakis P, Bertolini J, Dunstan D (2011) The effects of shear flow on protein structure and function. Biopolymers 95:733–745PubMedGoogle Scholar
  8. Borth W (1992) α2-Macroglobulin, a multifunctional binding protein with targeting characteristics. FASEB J 6:3345–3353PubMedGoogle Scholar
  9. Brewer GJ, Kanzer SH, Zimmerman EA, Celmins DF, Heckman SM, Dick R (2010) Copper and ceruloplasmin abnormalities in Alzheimer's disease. Am J Alzheimers Dis Other Demen 25(6):490–497PubMedCrossRefGoogle Scholar
  10. Brinkman-van der Linden EC, Van Ommen EC, Van Dijk W (1996) Glycosylation of α1-acid glycoprotein in septic shock: changes in degree of branching and in expression of sialyl Lewis (x) groups. Glycoconj J 13(1):27–31PubMedCrossRefGoogle Scholar
  11. Ceaglio N, Etcheverrigaray M, Kratje R, Oggero M (2010) Influence of carbohydrates on the stability and structure of a hyperglycosylated human interferon alpha mutein. Biochimie 92(8):971–978PubMedCrossRefGoogle Scholar
  12. Costantini V, Zacharski LR, Memoli VA, Kudryk BJ, Rousseau SM (1991a) Fibrinogen deposition without thrombin generation in primary human breast cancer tissue. Cancer Res 51:349–353PubMedGoogle Scholar
  13. Costantini V, Zacharski LR, Memoli VA, Kudryk BJ, Rousseau SM, Stump DC (1991b) Occurrence of components of fibrinolysis pathways in situ in neoplastic and nonneoplastic human breast tissue. Cancer Res 51:354–358PubMedGoogle Scholar
  14. Costantini V, Zacharski LR, Memoli VA, Kisiel W, Kudryk BJ, Rousseau SM, Stump DC (1992) Fibrinogen deposition and macrophage-associated fibrin formation in malignant and nonmalignant lymphoid tissue. J Lab Clin Med 119:124–131PubMedGoogle Scholar
  15. Cunnion KM, Hair PS, Buescher ES (2004) Cleavage of Complement C3b to iC3b on the surface of Staphylococcus aureus is mediated by serum complement factor I. Infect Immun 72:2858–2863PubMedCrossRefGoogle Scholar
  16. Davis GE (1992) The Mac-1 and p150,95 β2 integrins bind denatured proteins to mediate leukocyte cell-substrate adhesion. Exp Cell Res 200:242–252PubMedCrossRefGoogle Scholar
  17. Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF (2011) Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol 6:39–44PubMedCrossRefGoogle Scholar
  18. Desser L, Holomanova D, Zavadova E, Pavelka K, Mohr T, Herbacek I (2001) Oral therapy with proteolytic enzymes decreases excessive TGF-b levels in human blood. Cancer Chemother Pharmacol 47:S10–S15PubMedCrossRefGoogle Scholar
  19. Di Stasio E, De Cristofaro R (2010) The effect of shear stress on protein conformation: physical forces operating on biochemical systems: the case of von Willebrand factor. Biophys Chem 153:1–8PubMedCrossRefGoogle Scholar
  20. Doan N, Gettins PG (2007) Human α2-macroglobulin is composed of multiple domains, as predicted by homology with complement component C3. Biochem J 407:23–30PubMedCrossRefGoogle Scholar
  21. Dujovne I, Pollak VE, Pirani CL, Dillard MG (1972) The distribution and character of glomerular deposits in systemic lupus erythematosus. Kidney Int 2:33–50PubMedCrossRefGoogle Scholar
  22. Elliott MA, Elliott HG, Gallagher K, McGuire J, Field M, Smith KD (1997) Investigation into the concanavalin a reactivity, fucosylation and oligosaccharide microheterogeneity of α1-acid glycoprotein expressed in the sera of rheumatoid arthritis. J Chromatogr B: Biomed Sci Appl 688:229–237CrossRefGoogle Scholar
  23. Feldman SR, Ney KA, Gonias SL, Pizzo SV (1983) In vitro binding and in vivo clearance of human α2-macroglobulin after reaction with endoproteases from four different classes. Biochem Biophys Res Commun 114(2):757–762PubMedCrossRefGoogle Scholar
  24. Fournier T, Medjoubi-N N, Porquet D (2000) Alpha-1-acid glycoprotein. Biochem Biophys Acta 1482:157–171PubMedCrossRefGoogle Scholar
  25. French K, Yerbury JJ, Wilson MR (2008) Protease activation of α2-macroglobulin modulates a chaperone-like action with broad specificity. Biochemistry 47(4):1176–1185PubMedCrossRefGoogle Scholar
  26. Gehring MR, Shiels BR, Northemann W, de Bruijn MH, Kan CC, Chain AC, Noonan DJ, Fey GH (1987) Sequence of rat liver α2-macroglobulin and acute phase control of its messenger RNA. J Biol Chem 262(1):446–456PubMedGoogle Scholar
  27. Guller S, Buhimschi CS, Ma YY, Huang ST, Yang L, Kuczynski E, Zambrano E, Lockwood CJ, Buhimschi IA (2008) Placental expression of ceruloplasmin in pregnancies complicated by severe preeclampsia. Lab Investig 88(10):1057–1067PubMedCrossRefGoogle Scholar
  28. Hageman GS, Luthert PJ, Chong NHV, Johnson LV, Anderson DH, Mullins RF (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch's membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 20:705–732PubMedCrossRefGoogle Scholar
  29. Harpel PC (1976) Human α2-macroglobulin. Meth Enzymol 45:639–652PubMedCrossRefGoogle Scholar
  30. Harpel PC, Hayes MB, Hugli TE (1979) Heat-induced fragmentation of human alpha 2-macroglobulin. J Biol Chem 254:8669–8678PubMedGoogle Scholar
  31. Herczenik E, Bouma B, Korporaal SJA, Strangi R, Zeng Q, Gros P, Van Eck M, Van Berkel TJC, Gebbink MFBG, Akkerman JWN (2007) Activation of human platelets by misfolded proteins. Aterioscler Thromb Vasc Biol 27:1657–1665CrossRefGoogle Scholar
  32. Hespanhol MR, Mantovani B (2002) Phagocytosis by macrophages mediated by receptors for denatured proteins—dependence on tyrosine protein kinases. Braz J Med Biol Res 35:383–389PubMedCrossRefGoogle Scholar
  33. Hollander W, Colombo MA, Kirkpatrick B, Paddock J (1979) Soluble proteins in the human atherosclerotic plaque. With spectral reference to immunoglobulins, C3-complement component, alpha 1-antitrypsin and alpha 2-macroglobulin. Atherosclerosis 34(4):391–405PubMedCrossRefGoogle Scholar
  34. Housley J (1968) Alpha2-macroglobulin levels in disease in man. J Clin Pathol 21:27–31PubMedCrossRefGoogle Scholar
  35. Humphreys DT, Carver JA, Easterbrook-Smith SB, Wilson MR (1999) Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem 274:6875–6881PubMedCrossRefGoogle Scholar
  36. Husemann J, Loike JD, Anankov R, Febbraio M, Silverstein SC (2002) Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia 40(2):195–205PubMedCrossRefGoogle Scholar
  37. Imber MJ, Pizzo SV (1981) Clearance and binding of two electrophoretic “fast” forms of human α2-macroglobulin. J Biol Chem 256:8134–8139PubMedGoogle Scholar
  38. Islam KN, Takahashi M, Higashiyama S, Myint T, Uozumi N, Kayanoki Y, Kaneto H, Kosaka H, Taniguchi N (1995) Fragmentation of ceruloplasmin following non-enzymatic glycation reaction. J Biochem 118(5):1054–1060PubMedCrossRefGoogle Scholar
  39. Jana M, Palencia CA, Pahan K (2008) Fibrillar amyloid-beta peptides activate microglia via TLR2: implications for Alzheimer's disease. J Immunol 181:7254–7262PubMedGoogle Scholar
  40. Janssen BJC, Read RJ, Brunger AT, Gros P (2007) Crystallographic evidence for the deviating structure of C3b? Nature 448:E1–E2PubMedCrossRefGoogle Scholar
  41. Jozefowski S, Marcinkiewicz J (2010) Aggregates of denatured proteins stimulate nitric oxide and superoxide production in macrophages. Inflamm Res 59:277–289PubMedCrossRefGoogle Scholar
  42. Kanayama Y, Kurata Y, McMillan R, Tamerius JD, Negoro N, Curd JG (1986) Direct quantitation of activated C3 in human plasma with monoclonal anti-iC3b-C3d-neoantigen. J Immunol Methods 88(1):33–36PubMedCrossRefGoogle Scholar
  43. Kaplan J, Ray FA, Keogh EA (1981) Recognition of nucleophile-treated α2-macroglobulin by the alveolar macrophage α2-macroglobulin-protease complex receptor. J Biol Chem 256:7705–7707PubMedGoogle Scholar
  44. Koffler D, Paronetto F (1966) Fibrinogen deposition in acute renal failure. Am J Pathol 49:383–395PubMedGoogle Scholar
  45. Kranenburg O, Bouma B, Kroon-Batenburg LMJ, Reijerkerk A, Wu YP, Voest EE, Gebbink MFBG (2002) Tissue-type plasminogen activator is a multiligand cross-β structure receptor. Curr Biol 12:1833–1839PubMedCrossRefGoogle Scholar
  46. Kristensen T, Moestrup SK, Gliemann J, Bendtsen L, Sand O, Sottrup-Jensen L (1990) Evidence that the newly cloned low-density-lipoprotein receptor related protein (LRP) is the α2-macroglobulin receptor. FEBS Lett 276:151–155PubMedCrossRefGoogle Scholar
  47. LaMarre J, Wollenberg GK, Gonias SL, Hayes MA (1991) Cytokine binding and clearance properties of proteinase-activated alpha 2-macroglobulins. Lab Investig 65(1):3–14PubMedGoogle Scholar
  48. Larsson LJ, Lindahl P, Hallen-Sandgren C, Bjork I (1987) The conformational changes of α2-macroglobulin induced by methylamine or trypsin. Biochem J 243:47–54PubMedGoogle Scholar
  49. Lauer D, Müller R, Cott C, Otto A, Naumann M, Birkenmeir G (2001) Modulation of growth factor binding properties of α2-macroglobulin by enzyme therapy. Cancer Chemother Pharmacol 47:S4–S9PubMedCrossRefGoogle Scholar
  50. Lee WC, Kang D, Causevic E, Herdt AR, Eckman EA, Eckman CB (2010) Molecular characterization of mutations that cause globoid cell leukodystrophy and pharmacological rescue using small molecule chemical chaperones. J Neurosci 30(16):5489–5497PubMedCrossRefGoogle Scholar
  51. Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282(21):2035–2042PubMedCrossRefGoogle Scholar
  52. Marx G (1988) Zinc binding to fibrinogen and fibrin. Arch Biochem Biophys 266(1):285–288PubMedCrossRefGoogle Scholar
  53. Momeni N, Brudin L, Behnia F, Nordström B, Yosefi-Oudarji A, Sivberg B, Joghataei MT, Persson BL (2012) High complement factor I activity in the plasma of children with autism spectrum disorders. Autism Research and Treatment 2012:1–6CrossRefGoogle Scholar
  54. Motomiya Y, Ando Y, Haraoka K, Sun X, Iwamoto H, Uchimura T, Maruyama I (2003) Circulating level of α2-macroglobulin–β2-microglobulin complex in hemodialysis patients. Kidney Int 64:2244–2252PubMedCrossRefGoogle Scholar
  55. Narita M, Holtzman DM, Schwartz AL, Bu G (1997) α2-Macroglobulin complexes with and mediates the endocytosis of β-amyloid peptide via cell surface low-density lipoprotein receptor-related protein. J Neurochem 69:1904–1911PubMedCrossRefGoogle Scholar
  56. Negoro N, Okamura M, Takeda T, Koda S, Amatsu K, Inoue T, Curd JG, Kanayama Y (1989) The clinical significance of iC3b neoantigen expression in plasma from patients with systemic lupus erythematosus. Arthritis Rheum 32(10):1233–1242PubMedCrossRefGoogle Scholar
  57. Ottaviano FG, Handy DE, Loscalzo J (2008) Redox regulation in the extracellular environment. Circ J 72:1–16PubMedCrossRefGoogle Scholar
  58. Pangburn MK, Schreiber RD, Müller-Eberhard HJ (1981) Formation of the initial C3 convertase of the alternative complement pathway. J Exp Med 154:856–867PubMedCrossRefGoogle Scholar
  59. Paul J, Strickland S, Melchor JP (1999) Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimer's disease. J Exp Med 204(8):1999–2008CrossRefGoogle Scholar
  60. Pfeifer PH, Kawahara MS, Huglia TE (1999) Possible mechanism for in vitro complement activation in blood and plasma samples: futhan/EDTA controls in vitro complement activation. Clin Chem 45:1190–1199PubMedGoogle Scholar
  61. Poland DCW, Vallejo JJG, Niessen HWM, Nijmeyer R, Calafat J, Hack CE, Van het Hof B, Van Dijk W (2005) Activated human PMN synthesize and release a strongly fucosylated glycoform of α1-acid glycoprotein, which is transiently deposited in human myocardial infarction. J Leukoc Biol 78:453–461PubMedCrossRefGoogle Scholar
  62. Raeker M, Johnson LA (1995) Thermal and functional properties of bovine blood plasma and egg white proteins. J Food Sci 60(4):685–690CrossRefGoogle Scholar
  63. Ramaglia V, Hughes TR, Donev RM, Ruseva MM, Wu X, Huitinga I, Baas F, Neal JW, Morgan BP (2012) C3-dependent mechanism of microglial priming relevant to multiple sclerosis. Proc Natl Acad Sci U S A 109(3):965–970PubMedCrossRefGoogle Scholar
  64. Ritchie RF, Palomaki GE, Neveux LM, Navolotskaia O, Ledue TB, Craig WY (2004) Reference distributions for α2-macroglobulin: a practical, simple and clinically relevant approach in a large cohort. J Clin Lab Anal 18:139–147PubMedCrossRefGoogle Scholar
  65. Rodrigues EB (2007) Inflammation in dry age-related macular degeneration. Ophthalmologica 221(3):143–152PubMedCrossRefGoogle Scholar
  66. Roma SM, Di Loreto VE, Rigalli A (2010) Effect of the treatment with monofluorophosphate on the survival and tissue damage in rats with pancreatitis. Acta Gastroenterol Latinoam 41:122–127Google Scholar
  67. Rothbard JB, Kurnellas MP, Brownell S, Adams CM, Su L, Axtell RC, Chen R, Fathman CG, Robinson WH, Steinman L (2012) Therapeutic effects of systemic administration of chaperone αB-crystallin associated with binding proinflammatory plasma proteins. J Biol Chem 287:9708–9721PubMedCrossRefGoogle Scholar
  68. Sadoshima S, Tanaka K (1979) Fibrinogen and low density lipoprotein in the development of cerebral atherosclerosis. Atherosclerosis 34(2):93–103PubMedCrossRefGoogle Scholar
  69. Sato M, Schilsky ML, Stockert RJ, Morell AG, Sternlieb I (1990) Detection of multiple forms of human ceruloplasmin. A novel 200,000 form. J Biol Chem 265(5):2533–2537PubMedGoogle Scholar
  70. Scholl HPN, Charbel Issa P, Walier M, Janzer S, Pollok-Kopp B, Börncke F, Fritsche LG, Chong NV, Fimmers R, Weinker T, Holz FG, Weber BHF, Oppermann M (2008) Systemic complement activation in age-related macular degeneration. PLoS One 3(7):e2593PubMedCrossRefGoogle Scholar
  71. Scorza G, Minetti M (1998) One-electron oxidation pathway of thiols by peroxynitrite in biological fluids: bicarbonate and ascorbate promote the formation of albumin disulphide dimers in human blood plasma. Biochem J 329:405–413PubMedGoogle Scholar
  72. Scott BJ, Bradwell AR (1983) Identification of serum binding proteins for iron, zinc, cadmium, nickel and calcium. Clin Chem 29(4):629–633PubMedGoogle Scholar
  73. Sedlák E, Wittung-Stafshede P (2007) Discrete roles of copper ions in chemical unfolding of human ceruloplasmin. Biochemistry 46(33):9638–9644PubMedCrossRefGoogle Scholar
  74. Sedlák E, Žoldák G, Wittung-Stafshede P (2008) Role of copper in thermal stability of human ceruloplasmin. Biophys J 94(4):1384–1391PubMedCrossRefGoogle Scholar
  75. Shacter E, Williams JA, Lim M, Levine RL (1994) Differential susceptibility of plasma proteins to oxidative modification: examination by Western blot immunoassay. Free Radic Biol Med 17(5):429–437PubMedCrossRefGoogle Scholar
  76. Shainoff JR, Page IH (1972) Deposition of modified fibrinogen in the aortic intima. Atherosclerosis 16(3):287–305PubMedCrossRefGoogle Scholar
  77. Shiose S, Hata Y, Noda Y, Sassa Y, Takeda A, Yoshikawa H, Fujisawa K, Kubota T, Ishibashi T (2004) Fibrinogen stimulates angiogenesis by choroidal endothelial cells via autocrine VEGF. Graefes Arch Clin Exp Ophthalmol 242:777–783PubMedCrossRefGoogle Scholar
  78. Shukla N, Maher J, Masters J, Angelini GD, Jeremy JY (2006) Does oxidative stress change ceruloplasmin from a protective to a vasopathic factor? Atherosclerosis 187(2):238–250PubMedCrossRefGoogle Scholar
  79. Sim RB, Sim E (1981) Autolytic fragmentation of complement components C3 and C4 under denaturing conditions, a property shared with alpha2-macroglobulin. Biochem J 193:129–141PubMedGoogle Scholar
  80. Sottrup-Jensen L (1989) Alpha-macroglobulins: structure shape and mechanism of proteinase complex formation. J Biol Chem 264:11539–11542PubMedGoogle Scholar
  81. Sottrup-Jensen L, Hansen HF (1982) Nascent α2-macroglobulin-trypsin complex: incorporation of amines and water at the thiol esterified Glx residues of alpha-2-macroglobulin during activation with trypsin. Biochem Biophys Res Commun 107:93–100PubMedCrossRefGoogle Scholar
  82. Sottrup-Jensen L, Stepanik TM, Kristensen T, Wierzbicki DM, Jones CM, Lonblad PB, Magnusson S, Petersen TE (1984) Primary structure of α2-macroglobulin. J Biol Chem 259(10):8318–8327PubMedGoogle Scholar
  83. Sottrup-Jensen L, Gliemann J, Van Leuven F (1986) Domain structure of human α2-macroglobulin. Characterization of a receptor-binding domain obtained by digestion with papain. J Biol Chem 261:20–24Google Scholar
  84. Squitti R, Barbati G, Rossi L, Ventriglia M, Dal Forno G, Cesaretti S, Moffa F, Cardi I, Cassetta E, Pasqualletti P, Calabrese L, Lupoi D, Rossini PM (2006) Excess of nonceruloplasmin serum copper in AD correlates with MMSE, CSF [beta]-amyloid, and h-tau. Neurology 67(1):76–82PubMedCrossRefGoogle Scholar
  85. Squitti R, Quattrocchi CC, Dal Forno G, Antuono P, Wekstein DR, Capo CR, Salustri C, Rossini PM (2008) Ceruloplasmin (2-D PAGE) pattern and copper content in serum and brain of Alzheimer's disease patients. Biomark Insights 1:205–213Google Scholar
  86. Squitti R, Bressi F, Pasqualletti P, Bonomini C, Ghidoni R, Binetti G, Cassetta E, Moffa F, Ventriglia M, Vernieri F, Rossini PM (2009) Longitudinal prognostic value of serum “free” copper in patients with Alzheimer's disease. Neurology 72(1):50–55PubMedCrossRefGoogle Scholar
  87. Theilgaard-Mönch K, Jacobsen LC, Rasmussen T, Niemann CU, Udby L, Borup R, Gharib M, Arkwright PD, Gombart AF, Calafat J, Porse T, Borregaard N (2005) Highly glycosylated α1-acid glycoprotein is synthesized in myelocytes, stored in secondary granules, and released by activated neutrophils. J Leukoc Biol 78(2):462–470PubMedCrossRefGoogle Scholar
  88. Udan MLD, Ajit D, Crouse NR, Nichols MR (2008) Toll-like receptors 2 and 4 mediate Aβ(1–42) activation of the innate immune response in a human monocytic cell line. J Neurochem 104:524–533PubMedGoogle Scholar
  89. Upchurch GR, Ramdev N, Walsh MT, Loscalzo J (1998) Prothombotic consequences of the oxidation of fibrinogen and their inhibition by aspirin. J Thromb Thrombolysis 5:9–14CrossRefGoogle Scholar
  90. van der Schaft TL, Mooy CM, de Bruijn WC, de Jong PT (1993) Early stages of age-related macular degeneration: an immunofluorescence and electron microscopy study. Br J Ophthalmol 77:657–661PubMedCrossRefGoogle Scholar
  91. van Westrhenen R, Westra WM, van den Born J, Krediet RT, Keuning ED, Hiralall J, Dragt C, Hekking HP (2006) Alpha-2-macroglobulin and albumin are useful serum proteins to detect subclinical peritonitis in the rat. Perit Dial Int 26:101–107PubMedGoogle Scholar
  92. Wojtukiewicz MZ, Zacharski LR, Memoli VA, Kisiel W, Kudryk BJ, Rousseau SM, Stump DC (1989a) Absence of components of coagulation and fibrinolysis pathways in situ in mesothelioma. Thromb Res 55:279–284PubMedCrossRefGoogle Scholar
  93. Wojtukiewicz MZ, Zacharski LR, Memoli VA, Kisiel W, Kudryk BJ, Rousseau SM, Stump DC (1989b) Indirect activation of blood coagulation in colon cancer. J Thromb Haemost 62:1062–1066Google Scholar
  94. Wyatt AR, Wilson MR (2010) Identification of human plasma proteins as major clients for the extracellular chaperone clusterin. J Biol Chem 285:3532–3539PubMedCrossRefGoogle Scholar
  95. Wyatt AR, Yerbury JJ, Wilson MR (2009) Structural characterization of clusterin–client protein complexes. J Biol Chem 284:21920–21927PubMedCrossRefGoogle Scholar
  96. Yerbury JJ, Rybchyn MS, Easterbrook-Smith SB, Henriques C, Wilson MR (2005) The acute phase protein haptoglobin is a mammalian extracellular chaperone with an action similar to clusterin. Biochemistry 44:10914–10925PubMedCrossRefGoogle Scholar
  97. Yerbury JJ, Kumita JR, Meehan S, Dobson CM, Wilson MR (2009) α2-Macroglobulin and haptoglobin suppress amyloid formation by interacting with prefibrillar protein species. J Biol Chem 284:4246–4252PubMedCrossRefGoogle Scholar
  98. Zsila F (2010) Chaperone-like activity of the acute-phase component human serum α1-acid glycoprotein: inhibition of thermal- and chemical-induced aggregation of various proteins. Bioorg Med Chem Lett 20(3):1205–1209PubMedCrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2012

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CambridgeCambridgeUK
  2. 2.Illawarra Health and Medical Research InstituteUniversity of WollongongWollongongAustralia

Personalised recommendations