Cell Stress and Chaperones

, Volume 18, Issue 2, pp 137–144 | Cite as

Human TRiC complex purified from HeLa cells contains all eight CCT subunits and is active in vitro

  • Kelly M. Knee
  • Oksana A. Sergeeva
  • Jonathan A. King
Original Paper

Abstract

Archaeal and eukaryotic cytosols contain group II chaperonins, which have a double-barrel structure and fold proteins inside a cavity in an ATP-dependent manner. The most complex of the chaperonins, the eukaryotic TCP-1 ring complex (TRiC), has eight different subunits, chaperone containing TCP-1 (CCT1–8), that are arranged so that there is one of each subunit per ring. Aspects of the structure and function of the bovine and yeast TRiC have been characterized, but studies of human TRiC have been limited. We have isolated and purified endogenous human TRiC from HeLa suspension cells. This purified human TRiC contained all eight CCT subunits organized into double-barrel rings, consistent with what has been found for bovine and yeast TRiC. The purified human TRiC is active as demonstrated by the luciferase refolding assay. As a more stringent test, the ability of human TRiC to suppress the aggregation of human γD-crystallin was examined. In addition to suppressing off-pathway aggregation, TRiC was able to assist the refolding of the crystallin molecules, an activity not found with the lens chaperone, α-crystallin. Additionally, we show that human TRiC from HeLa cell lysate is associated with the heat shock protein 70 and heat shock protein 90 chaperones. Purification of human endogenous TRiC from HeLa cells will enable further characterization of this key chaperonin, required for the reproduction of all human cells.

Keywords

TRiC CCT Chaperonin Crystallin Protein folding 

References

  1. Acosta-Sampson L, King J (2010) Partially folded aggregation intermediates of human gammaD-, gammaC-, and gammaS-crystallin are recognized and bound by human alphaB-crystallin chaperone. J Mol Biol 401(1):134–152PubMedCrossRefGoogle Scholar
  2. Almeida MB, do Nascimento JL, Herculano AM, Crespo-López ME (2011) Molecular chaperones: toward new therapeutic tools. Biomed Pharmacother 65(4):239–243PubMedCrossRefGoogle Scholar
  3. Bigotti MG, Clarke AR (2008) Chaperonins: the hunt for the group II mechanism. Arch Biochem Biophys 474(2):331–339PubMedCrossRefGoogle Scholar
  4. Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL, Sigler PB (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371(6498):578–586PubMedCrossRefGoogle Scholar
  5. Cong Y, Baker ML, Jakana J, Woolford D, Miller EJ, Reissmann S, Kumar RN, Redding-Johanson AM, Batth TS, Mukhopadhyay A, Ludtke SJ, Frydman J, Chiu W (2010) 4.0-A resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement. Proc Natl Acad Sci USA 107(11):4967–4972PubMedCrossRefGoogle Scholar
  6. Dekker C, Roe SM, McCormack EA, Beuron F, Pearl LH, Willison KR (2011) The crystal structure of yeast CCT reveals intrinsic asymmetry of eukaryotic cytosolic chaperonins. EMBO J 30(15):3078–3090Google Scholar
  7. Douglas NR, Reissmann S, Zhang J, Chen B, Jakana J, Kumar R, Chiu W, Frydman J (2011) Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber. Cell 144(2):240–252PubMedCrossRefGoogle Scholar
  8. Evans P, Slingsby C, Wallace BA (2008) Association of partially folded lens betaB2-crystallins with the alpha-crystallin molecular chaperone. Biochem J 409(3):691–699PubMedCrossRefGoogle Scholar
  9. Feldman DE, Spiess C, Howard DE, Frydman J (2003) Tumorigenic mutations in VHL disrupt folding in vivo by interfering with chaperonin binding. Mol Cell 12(5):1213–1224PubMedCrossRefGoogle Scholar
  10. Ferreyra RG, Frydman J (2000) Purification of the cytosolic chaperonin TRiC from bovine testis. Methods Mol Biol 140:153–160PubMedGoogle Scholar
  11. Flaugh SL, Kosinski-Collins MS, King J (2005) Contributions of hydrophobic domain interface interactions to the folding and stability of human gammaD-crystallin. Protein Sci 14(3):569–581PubMedCrossRefGoogle Scholar
  12. Fountoulakis M, Tsangaris G, Oh J-e, Maris A, Lubec G (2004) Protein profile of the HeLa cell line. J Chromatogr A 1038(1–2):247–265PubMedGoogle Scholar
  13. Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603–647PubMedCrossRefGoogle Scholar
  14. Frydman J, Nimmesgern E, Erdjument-Bromage H, Wall J, Tempst P, Hartl F (1992) Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO J 11(13):4767–4778PubMedGoogle Scholar
  15. Frydman J, Nimmesgern E, Ohtsuka K, Hartl FU (1994) Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370(6485):111–117PubMedCrossRefGoogle Scholar
  16. Gao Y, Thomas J, Chow R, Lee G, Cowan N (1992) A cytoplasmic chaperonin that catalyzes beta-actin folding. Cell 69(6):1043–1050PubMedCrossRefGoogle Scholar
  17. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324–332PubMedCrossRefGoogle Scholar
  18. Hoehenwarter W, Tang Y, Ackermann R, Pleissner K-P, Schmid M, Stein R, Zimny-Arndt U, Kumar NM, Jungblut PR (2008) Identification of proteins that modify cataract of mouse eye lens. Proteomics 8(23–24):5011–5024PubMedCrossRefGoogle Scholar
  19. Horwich AL, Fenton WA, Chapman E, Farr GW (2007) Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23:115–145PubMedCrossRefGoogle Scholar
  20. Horwitz J (1992) Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 89(21):10449–10453PubMedCrossRefGoogle Scholar
  21. Hynes GM, Willison KR (2000) Individual subunits of the eukaryotic cytosolic chaperonin mediate interactions with binding sites located on subdomains of beta-actin. J Biol Chem 275(25):18985–18994PubMedCrossRefGoogle Scholar
  22. Kabir MA, Uddin W, Narayanan A, Reddy PK, Jairajpuri MA, Sherman F, Ahmad Z (2011) Functional subunits of eukaryotic chaperonin CCT/TRiC in protein folding. J Amino Acids 2011:843206PubMedGoogle Scholar
  23. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111Google Scholar
  24. Kim S, Willison K, Horwich A (1994) Cytosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains. Trends Biochem Sci 19(12):543–548PubMedCrossRefGoogle Scholar
  25. Kitamura A, Kubota H, Pack C-G, Matsumoto G, Hirayama S, Takahashi Y, Kimura H, Kinjo M, Morimoto RI, Nagata K (2006) Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state. Nat Cell Biol 8(10):1163–1170PubMedCrossRefGoogle Scholar
  26. Knee KM, Goulet DR, Zhang J, Chen B, Chiu W, King JA (2011) The group II chaperonin Mm-Cpn binds and refolds human γD crystallin. Protein Sci 20(1):30–41PubMedCrossRefGoogle Scholar
  27. Kosinski-Collins MS, King J (2003) In vitro unfolding, refolding, and polymerization of human gammaD crystallin, a protein involved in cataract formation. Protein Sci 12(3):480–490PubMedCrossRefGoogle Scholar
  28. Kubota H, Yokota S, Yanagi H, Yura T (1999) Structures and co-regulated expression of the genes encoding mouse cytosolic chaperonin CCT subunits. Eur J Biochem 262(2):492–500PubMedCrossRefGoogle Scholar
  29. Leitner A, Joachimiak LA, Bracher A, Mönkemeyer L, Walzthoeni T, Chen B, Pechmann S, Holmes S, Cong Y, Ma B, Ludtke S, Chiu W, Hartl FU, Aebersold R, Frydman J (2012) The molecular architecture of the eukaryotic chaperonin TRiC/CCT. Structure 20(5):814–825PubMedCrossRefGoogle Scholar
  30. Lewis V, Hynes G, Dong Z, Saibil H, Willison K (1992) T-complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol. Nature 358(6383):249–252PubMedCrossRefGoogle Scholar
  31. Llorca O, Martín-Benito J, Gómez-Puertas P, Ritco-Vonsovici M, Willison KR, Carrascosa JL, Valpuesta JM (2001) Analysis of the interaction between the eukaryotic chaperonin CCT and its substrates actin and tubulin. J Struct Biol 135(2):205–218PubMedCrossRefGoogle Scholar
  32. Machida K, Masutani M, Kobayashi T, Mikami S, Nishino Y, Miyazawa A, Imataka H (2012) Reconstitution of the human chaperonin CCT by co-expression of the eight distinct subunits in mammalian cells. Protein Expr Purif 82(1):61–69PubMedCrossRefGoogle Scholar
  33. Mitchell P, Cumming RG, Attebo K, Panchapakesan J (1997) Prevalence of cataract in Australia: the Blue Mountains eye study. Ophthalmology 104(4):581–588PubMedGoogle Scholar
  34. Moreau KL, King JA (2012a) Cataract-causing defect of a mutant γ-crystallin proceeds through an aggregation pathway which bypasses recognition by the α-crystallin chaperone. PLoS One 7(5):e37256PubMedCrossRefGoogle Scholar
  35. Moreau KL, King JA (2012b) Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol Med 18(5):273–282PubMedCrossRefGoogle Scholar
  36. Muñoz IG, Yébenes H, Zhou M, Mesa P, Serna M, Park AY, Bragado-Nilsson E, Beloso A, de Cárcer G, Malumbres M, Robinson CV, Valpuesta JM, Montoya G (2011) Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin. Nat Struct Mol Biol 18(1):14–19PubMedCrossRefGoogle Scholar
  37. Neirynck K, Waterschoot D, Vandekerckhove J, Ampe C, Rommelaere H (2006) Actin interacts with CCT via discrete binding sites: a binding transition-release model for CCT-mediated actin folding. J Mol Biol 355(1):124–138PubMedCrossRefGoogle Scholar
  38. Nimmesgern E, Hartl FU (1993) ATP-dependent protein refolding activity in reticulocyte lysate. Evidence for the participation of different chaperone components. FEBS Lett 331(1–2):25–30PubMedCrossRefGoogle Scholar
  39. Norcum MT (1996) Novel isolation method and structural stability of a eukaryotic chaperonin: the TCP-1 ring complex from rabbit reticulocytes. Protein Sci 5(7):1366–1375PubMedCrossRefGoogle Scholar
  40. Pappenberger G, McCormack EA, Willison KR (2006) Quantitative actin folding reactions using yeast CCT purified via an internal tag in the CCT3/gamma subunit. J Mol Biol 360(2):484–496PubMedCrossRefGoogle Scholar
  41. Pereira JH, Ralston CY, Douglas NR, Kumar R, Lopez T, McAndrew RP, Knee KM, King JA, Frydman J, Adams PD (2012) Mechanism of nucleotide sensing in group II chaperonins. EMBO J 31(3):731–740CrossRefGoogle Scholar
  42. Pereira JH, Ralston CY, Douglas NR, Meyer D, Knee KM, Goulet DR, King JA, Frydman J, Adams PD (2010) Crystal structures of a group II chaperonin reveal the open and closed states associated with the protein folding cycle. J Biol Chem 285(36):27958–27966PubMedCrossRefGoogle Scholar
  43. Reissmann S, Parnot C, Booth CR, Chiu W, Frydman J (2007) Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins. Nat Struct Mol Biol 14(5):432–440PubMedCrossRefGoogle Scholar
  44. Roobol A, Carden MJ (1999) Subunits of the eukaryotic cytosolic chaperonin CCT do not always behave as components of a uniform hetero-oligomeric particle. Eur J Cell Biol 78(1):21–32PubMedCrossRefGoogle Scholar
  45. Roobol A, Holmes FE, Hayes NV, Baines AJ, Carden MJ (1995) Cytoplasmic chaperonin complexes enter neurites developing in vitro and differ in subunit composition within single cells. J Cell Sci 108(Pt 4):1477–1488PubMedGoogle Scholar
  46. Spiess C, Meyer AS, Reissmann S, Frydman J (2004) Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol 14(11):598–604PubMedCrossRefGoogle Scholar
  47. Spiess C, Miller EJ, McClellan AJ, Frydman J (2006) Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins. Mol Cell 24(1):25–37PubMedCrossRefGoogle Scholar
  48. Tam S, Geller R, Spiess C, Frydman J (2006) The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat Cell Biol 8(10):1155–1162PubMedCrossRefGoogle Scholar
  49. Tam S, Spiess C, Auyeung W, Joachimiak L, Chen B, Poirier MA, Frydman J (2009) The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation. Nat Struct Mol Biol 16(12):1279–1285PubMedCrossRefGoogle Scholar
  50. Tang Y-C, Chang H-C, Roeben A, Wischnewski D, Wischnewski N, Kerner MJ, Hartl FU, Hayer-Hartl M (2006) Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell 125(5):903–914PubMedCrossRefGoogle Scholar
  51. Thulasiraman V, Ferreyra RG, Frydman J (2000) Folding assays. Assessing the native conformation of proteins. Methods Mol Biol 140:169–177PubMedGoogle Scholar
  52. Thulasiraman V, Yang CF, Frydman J (1999) In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J 18(1):85–95PubMedCrossRefGoogle Scholar
  53. Tran DP, Kim SJ, Park NJ, Jew TM, Martinson HG (2001) Mechanism of poly(A) signal transduction to RNA polymerase II in vitro. Mol Cell Biol 21(21):7495–7508PubMedCrossRefGoogle Scholar
  54. Yaffe MB, Farr GW, Miklos D, Horwich AL, Sternlicht ML, Sternlicht H (1992) TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature 358(6383):245–248PubMedCrossRefGoogle Scholar
  55. Zhang J, Baker ML, Schröder GF, Douglas NR, Reissmann S, Jakana J, Dougherty M, Fu CJ, Levitt M, Ludtke SJ, Frydman J, Chiu W (2010) Mechanism of folding chamber closure in a group II chaperonin. Nature 463(7279):379–383PubMedCrossRefGoogle Scholar
  56. Zhang Q, Yu D, Seo S, Stone EM, Sheffield VC (2012) Intrinsic protein-protein interaction mediated and chaperonin assisted sequential assembly of a stable Bardet Biedl syndrome protein complex, the BBSome. J Biol Chem 287(24):20625–20635Google Scholar

Copyright information

© Cell Stress Society International 2012

Authors and Affiliations

  • Kelly M. Knee
    • 1
  • Oksana A. Sergeeva
    • 1
  • Jonathan A. King
    • 1
  1. 1.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations